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1 Introduction

In Geometry of Surfaces [2], Stillwell begins in chapter 1 by introducing the Euclidean
Plane and the isometries of the plane, then in chapter 2 defines Euclidean surfaces as
specific quotients of the Euclidean plane. In Chapter 3 and 4, he introduces the sphere and
the hyperbolic plane, what lines look like in these spaces and then what the isometries are
of these spaces. Then in a similar manner to Chapter 2, defines spherical and hyperbolic
surfaces as specific quotients of these spaces.

Following this format, the project goals was to formalise the Euclidean, Spherical and
Hyperbolic Spaces in n-dimensions, the notion of geodesics (lines) in these spaces and
discuss the curvature of these spaces using the analytic techniques of Riemannian geometry.
Sections 2-4 of this report will detail this procedure and the results achieved.

After we have introduced the spaces that were dealt with in Stillwell, we will then study
their curvature in section 5 and indeed show that these are spaces of constant curvature.
Finally in section 6, we will extend the classification results that Stillwell presents for
Euclidean, Spherical and Hyperbolic surfaces in 2 and 3 dimensions to n-dimensions.

2 Euclidean

Euclidean space, Rn can be covered with a single chart, (Rn, Id). Evidently, Rn is a
smooth manifold, as there are no chart transition functions. The metric is the Euclidean
metric,

g = δijdx
i ⊗ dxj (1)

and so the Christoffel Symbols for the Riemannian Connection are all

Γijk = 0. (2)

To determine what the geodesics look like, take some smooth curve γ : I → Rn and require
that the covariant derivative of it’s velocity along the curve vanishes; the requirement that
it is a geodesic. We first expand the velocity out into a co-ordinate basis

γ̇(t) = γ̇j(t)∂j ,
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and now we take the covariant derivative,

Dtγ̇ = γ̈j(t)∂j + γ̇j(t)∇ ˙γ(t)
i
∂i
∂j

= γ̈j(t)∂j + γ̇j(t)γ̇i(t)∇∂i∂j
= γ̈j(t)∂j + γ̇j(t)γ̇i(t)Γkij∂k

= γ̈j(t)∂j .

Now the requirement that Dtγ̇ = 0 gives the second order ODE

γ̈j(t) = 0, j = 1, . . . , n. (3)

Hence, the geodesics in Rn are the constant speed parametrisations of straight lines where

γ(t) = αt+ βt α, β ∈ Rn.

3 Spherical

Turning our attention to the n-dimensional spheres of radius 1, Sn, defined by

Sn = {x ∈ Rn+1 : ‖x‖ ≤ 1}. (4)

The first task is prove that it is a smooth manifold.

First, denote the north pole as N = (0, ..., 1) then we choose open sets

UN = Sn\{N}

and
US = Sn\{−N}.

Take a point x = (x1, ..., xn, xn+1) ∈ Sn, and let u = (x1, ..., xn) and τ = xn+1, and so we
can write a point x ∈ Sn as x = (u, τ). We define the stereographic projection from the
north pole to be

φN (x) = φN (u, τ) =
1

1− τ
u, (5)

and it’s inverse will be

φ−1N (x) =
1

1 + |x|2
(2x, |x|2 − 1). (6)
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We denote the stereographic projection through the south pole to be

φS(x) = φN (−x).

It follows from 5 and 6 that φN : UN → φ(UN ) is a homeomorphism, and hence the same
is true for φS = φN ◦ (−Id) from US onto φ(US).

The atlas
A = {(UN , φN ), (US , φS)},

covers Sn and since on UN ∩ US
φ−1S ◦ φN (x)

and
φ−1N ◦ φS(x)

are smooth, Sn is a smooth manifold.

We now wish to define a metric, ground, for the n-sphere. We will do this by pulling back
the Euclidean metric on Rn+1 to Sn using the map φN as follows.

φ∗Ng = δijd
( xi

1− xn+1

)
⊗ d
( xj

1− xn+1

)
(7)

=
n∑
i=1

( −xidxn+1

(1− xn+1)2
+

dxi

1− xn+1

)2
(8)

This will give a metric for all points excluding the north pole, however, doing the same
calculation using the map φS will yield a metric for the north pole which is the same 8.
We now turn to the question of what are the geodesics of Sn given ground.

Now, in the case of the n-spheres and the hyperbolic spaces that will follow, calculating
what the geodesics are straight from the covariant derivative is a tedious task. Instead,
here we take the claim of Stillwell that the geodesics, (or lines as he calls them), will be
given by intersections of the 2-sphere with planes running through the origin, known as
great circles, and generalise it to n-dimensions. Hence, the geodesics on Sn will be the
curves given by the intersection of 2-planes that run through the origin (planes defined in
two dimensions) with Sn, also known as great circles. A symmetry argument for this in
n-dimensions is presented in [1].
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4 Hyperbolic Space

There are many different models of hyperbolic space, the most natural image that comes
to mind is the upper sheet of the hyperboloid. However, Stillwell does not mention this
at all, but rather introduces the Poincare upper half space model and then shows that it
is isometric to the Poincare disk model in sections 4.1 and 4.2. In this section, we will
first introduce the hyperboloid model and show that it is a smooth manifold. We then
outline the two models of hyperbolic space in n-dimensions presented by Stillwell, then
we will show that the hyperboloid model is isometric to these and so is consistent with
the results presented in Stillwell. We will then look at the geodesics in each of the three
models, extending the work of Stillwell in Chapter 4.

To simplify the equations that follow, we represent a point x ∈ Rn+1 as x = (u, τ) where
u = (x1, . . . , xn) and τ = xn+1. Now, the hyperboloid model of hyperbolic space is

Hn = {(u, τ) ∈ Rn+1 : τ2 − |u|2 = 1, τ > 0.}

To define a metric on this space, we pull back the minkowski metric,

m = (du1)2 + · · ·+ (dun)2 − (dτ)2 (9)

using the inclusion

i : Hn → Rn+1.

We now prove that it is a smooth manifold. We first note that it can be covered with a
single chart (Hn, π) where π is the stereographic projection through −N defined as

π(u, τ) =
1

1 + τ
u (10)

and it’s inverse is

π−1(x) =
1

1− |x|2
(2x, |x|2 + 1). (11)

Since there is only one chart and hence no chart transition functions to compute, Hn is a
smooth manifold.

Here, we introduce the other models for the hyperbolic space that Stillwell presented.
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The Poincare half space model takes

Hn = {(x1, . . . , xn−1, y) ∈ Rn : y > 0}

which is the upper half plane, with the metric

hu =
(dx1)2 + · · ·+ (dxn−1)2 + dy2

y2
.

The Poincare ball model is the unit ball Bn with the metric given by

hd = 4
(dx1)2 + · · ·+ (dxn)2

(1− |x|2)2
.

Now, it just so happens that the stereographic projection map π is mapped onto the unit
ball Bn. We can see this from the fact that

|u|2 = (τ2 − 1) = (τ − 1)(τ + 1)

and since τ > 1,

|π(u, τ)|2 =
τ − 1

τ + 1
≤ 1.

Since 10 and 11 are smooth away from |x| = 1, we can conclude that the hyperboloid model
is diffeomorphic to the ball model. To show that they are equivalent, we need to show that
π is an isometry. s

Definition 4.1 Let M and M’ be two riemannian manifolds and φ : M → M ′ a diffeo-
morphism. If

φ∗g′ = g,

then φ is an isometry.

We will consider the map
π−1 : Bn → Hn

and we will pull back the Minkowski metric to the unit ball. Our approach will be different
to the one we used when calculating the round metric, we will make use of the push forward,
π−1∗ . Now the push forward will push vectors V ∈ TpBn to vectors in Hn. Noting that in
some co-ordinate chart π−1(x) = (u(x), τ(x)) and expanding V = V i∂i we can write the
push-forward to be
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π−1∗ V = V i∂u
j

∂xi
∂

∂uj
+ V i ∂τ

∂xi
∂

∂τ
= V uj

∂

∂uj
+ V τ

∂

∂τ
,

and so we can define the pull back of the minkowski metric on Hn to Bn to be

(π−1)∗m(V, V ) = m(π−1∗ V, π−1∗ V ),

which is just the minkowski metric evaluated on vectors in the ball model.

Now,

V uj =
2V j

1− |x|2
+

4xj < V, x >

(1− |x|2)2
, (12)

and

V τ =
4 < V, x >

(1− |x|2)2
. (13)

Hence,

m(π−1∗ V, π−1∗ V ) =
n∑
j=1

(V ui)2 − (V τ)2

=
n∑
j=1

(
2V j

1− |x|2
+

4xj < V, x >

(1− |x|2)2
)2 − (

4 < V, x >

(1− |x|2)2
)2

= 4
(dx1)2 + · · ·+ (dxn)2

(1− |x|2)2

= hd.

Therefore, the hyperboloid model and the half space model are isometric.

In section 4.2, Stillwell shows that the Poincare ball model is isometric to the upper half
space model in 2 dimensions. We will not prove it here in n-dimensions, but we note that
the same inversion used by Stillwell,

J(z) = −iz + i

z − i
, (14)
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can be used in any dimension and so the proof for n dimensions is the same as Stillwell
presents, with some minor modifications. So, we conclude that the hyperbolic model
presented here is the same as the two models that Stillwell presented in sections 4.1 and
4.2.

Let’s now look at what geodesics look like in each of these models. Beginning with the
hyperboloid model, we note in a similar fashion to geodesics of the spheres, the geodesics
to be intersection of 2-planes that run through the origin with the upper sheet, known as
great hyperbolas.

For the ball model, the geodesics are the lines and arcs that are orthogonal to the boundary
of the ball. Finally, for the upper half space model, we the geodesics are vertical lines and
semi-circles centred on the y = 0 axis. These results are proved in n-dimensions in [1]. For
n = 2, these geodesics can be drawn on a diagram as shown in figure 1.

Figure 1: The geodesics (in blue) of the disk model shown on the left and the geodesics of
the upper half plane model on the right

5 Curvature

In chapter 4 of Stillwell, he uses the radii of curvature of two normal sections to the pseudo
sphere in order to compute the Gaussian curvature. This was quite simple using a dia-
gram for surfaces, but, we would like to extend notions of curvature to higher dimensional
manifolds. In this section, we briefly outline the definitions of certain curvature tensors
and what they mean geometrically. Then we will use these to show that indeed the spaces
introduced above are constant curvature.
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Given a connection ∇, the flatness criteria, which is the criteria for covariant differentiation
to commute for vector fields X,Y and Z, is given by

∇X∇Y Z −∇Y∇XZ = ∇[X,Y ]Z, (15)

and if satisfied means that manifold with the connection ∇ on it is flat. Knowing this, we
would like to define the Riemann Curvature endomorphism to be

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (16)

which we can think of as how much our connection deviates from the flatness criterion,
i.e. how much our space curves. We then define the Riemann Curvature tensor for vector
fields X,Y,Z and W as

Rm(X,Y, Z,W ) =< R(X,Y )Z,W >, (17)

and is invariant under local isometries. This can be represented with lowered indices
as

Rijkl,

which is useful notation to define the Ricci Curvature tensor as

Rij = gklRkijm (18)

and the Ricci scalar curvature

S = gijRij . (19)

Now that we have this machinery lined up for us, we can now calculate the same curvature
as Stillwell did in section 4.1, which he did by

• Picking a plane that is normal to the surface (that contains the normal vector to the
surface), call this a normal plane

• Taking the curve that is the intersection of this plane with the surface

• Finding the curvature of this curve, call it κ

• Repeating the above steps for every normal plane
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• Then taking the product of the maximum curvature κ1 and minimum curvature κ2,
these are called the principal curvatures

• K = κ1κ2 is the Gaussian curvature.

Now, Gaussian Curvature is the curvature of surfaces in R3, we need a way to relate what
Stillwell did with Gaussian curvature to our generalisation of these spaces to Rn. The way
we do this for a riemannian manifold M at some point p is

• Take a 2 dimensional subspace of TpM , Π

• Take the geodesics which lie in Π and let S be the surface swept out by them

• This is called the plane section

• We can use Gauss’ Theorema Egregium to compute the Gaussian curvature of S,

K(X,Y ) =
Rm(X,Y, Y,X)

|X|2|Y |2− < X,Y >2
(20)

where (X,Y ) is a basis for Π.

• This is called the sectional curvature of M associated with Π at p

If the sectional curvature of a manifold M is the same for all p ∈M , then we say that M
is of constant curvature.

Now, that we have this, and the Riemann curvature tensor defined, we will compute the
sectional curvatures of our spaces. We begin with Rn, which is the easiest case, since it
is flat, and so the curvature tensor is zero for all points. Hence the sectional curvature is
zero.

Now we look at Sn which is homogeneous and isotropic, and so we only need to look at
the curvature at the north pole using a plane Π spanned by any two basis vectors, so let’s
choose (∂1, ∂2). The geodesics that have initial velocity in Π are great circles which will
always remain in the subspace (x1, x2, xn+1). So we effectively have circles of radius 1 in
R3. The span of these circles will be S2. We know from early differential geometry that
the the unit sphere has Gaussian curvature 1 and so Sn has constant sectional curvature
1. If we allow Sn to be of any radius R, then it will have constant sectional curvature 1

R2 ,
denote this space as SnR.

A similar argument yields the same result as Stillwell achieved for Hn, which has constant
sectional curvature −1. If we allow the Ball Model of the hyperbolic space to have any
radius, we get that Hn

R will have constant negative sectional curvature − 1
R2 .
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6 The Killing-Hopf Theorem

Stillwell dedicates all of chapter 2, 3.6 and chapter 5 to determine what spaces look like
the Euclidean plane, the 2-sphere and the hyperbolic plane. In chapter 2 he showed that
each complete, connected euclidean surface is of the form R2/Γ where Γ is a discontinuous
fixed point free group of isometries. He then mirrors this argument for spherical surfaces
in section 3.6 and then again for hyperbolic surfaces in chapter 5. Armed with the gen-
eralisation of these spaces to n dimensions and radii R, we now introduce the necessary
concepts to establish the Killing-Hopf theorem that Stillwell proves for the n=2 case. We
begin with the following theorem from [3].

Theorem 6.1 Let N be a simply connected complete pseudo-riemannian manifold of con-
stant sectional curvature K. Let M be a pseudo-riemannian manifold which has a tangent
space isometric to a tangent space of M. Then, M is complete and of constant curvature K
iff M is isometric to the quotient N/Γ of N by a properly discontinuous group of isometries.

With this theorem, we would be able to classify every space of constant curvature as either
a quotient of Rn, SnR or Hn

R if we knew what the groups Γ are. This is precisely the
substance of the killing-hopf theorem, but before we can state it we will need to identify
the isometries in each of these spaces that act freely and discontinuously. For a group to
act freely there must be no fixed points and for it to act discontinuously requires that for
any P ∈M , there must not be a Γ-orbit with a limit point.

Now, what are the possible groups of isometries? We introduce the group of isometries of
Euclidean space as E(n) which contains both translations and rotations, and the orthogonal
group O(n) ⊂ E(n) are the isometries of Sn−1. The isometries of hyperbolic space Hn−1

R

we will denote O1(n)

We now state the killing-hopf theorem.

Theorem 6.2 Let M be a riemannian manifold of dimension n ≥ 2 and K a real number.
Then M is complete, connected and of constant curvature K iff it is isometric to

• SnR/Γ where Γ ⊂ O(n+ 1), if K > 0

• Rn/Γ where Γ ⊂ E(n), if K = 0

• Hn
R/Γ where Γ ⊂ O1(n+ 1), if K < 0

where Γ acts freely and discontinuously.
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7 Conclusion

The results that were presented and developed in John Stillwell’s Geometry of Surfaces, for
2 dimensional manifolds, were extended into n dimensions. Specifically, we have formalised
the Rn, Sn and Hn spaced and have looked at their geodesics as well as studied their
curvature and shown that they are indeed constant curvature manifolds. We have also
shown much of the analytic tools of Riemannian geometry and applied them to these
spaces of constant curvature. We have then extended very briefly Stillwell’s search of
complete, connected and constant curvature manifolds by giving the Killing-Hopf theorem
in n-dimensions.
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