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1 Introduction

A new derivation for for the Wallis Formula for pi was found by using the variational
principle to find the energy levels of the hydrogen atom [Friedmann and Hagen, 2015].
However, in this derivation, a gaussian trial wave function was used for the hydrogen atom,
however it is known that the true wave function is not a Gaussian but in fact goes as e−rα0 .
The purpose of this research is to follow the argument presented in the paper [Friedmann
and Hagen, 2015] with the true wave function for the hydrogen atom and see if the Wallis
Formula for π still emerges.

2 Original Paper

In this section, we will re-produce the method and results in the paper by Friedmann and
Hagen with the trial wave function

ψαlm = rle−αr
2
Yl
m(θ, φ).

2.1 Finding the Expectation Value for the Hamiltonian

The expectation value will be given by:

〈H(α)〉 =
〈ψαlm|Ĥ|ψαlm〉
〈ψαlm|ψαlm〉

.
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We shall first deal with the denominator:

〈ψαlm|ψαlm〉 =

∫
R3

ψ∗ψ d3r

The trial wave function is rle−αr
2
Yl
m(θ, φ) which is of the form R(r)Yl

m(θ, φ), we substitute
this later form into our expression:

=

∫
R3

r2(R(r))2Yl′
∗m′

(θ, φ)Yl
m(θ, φ)d3r

=

∫ ∞
0

r2(R(r))2dr

∫ π

0

∫ 2π

0
Yl′
∗m′

(θ, φ)Yl
m(θ, φ) sin θdθdφ

It is known that:∫ π

0

∫ 2π

0
Yl′
∗m′

(θ, φ)Yl
m(θ, φ) sin θdθdφ = δll′δmm′

and since l′ = l and m′ = m:∫ π

0

∫ 2π

0
Yl′
∗m′

(θ, φ)Yl
m(θ, φ) sin θdθdφ = 1

carrying on calculating the denominator:

〈ψαlm|ψαlm〉 =

∫ ∞
0

r2(R(r))2dr

= 2−
5
2
−lα−

3
2
−lΓ(l +

3

2
)

The hamiltonian operator is:

Ĥ = K̂ + V̂ =
−~2

2m
∇2 − e2

r
.

The expectation value for the potential energy is given by:
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〈ψαlm|V̂ |ψαlm〉 = 〈ψαlm
∣∣∣∣−e2r

∣∣∣∣ψαlm〉
=

∫
R3

ψ∗
(
−e2

r

)
ψ d3r

=

∫
R3

(
−e2

r

)
(R(r))2Yl′

∗m′
(θ, φ)Yl

m(θ, φ)d3r

=

∫ ∞
0

(
−e2

r

)
r2(R(r))2dr

∫ π

0

∫ 2π

0
Yl′
∗m′

(θ, φ)Yl
m(θ, φ) sin θdθdφ

=

∫ ∞
0
−e2r(R(r))2dr

=
e2Γ(l + 1)

−2l+2αl+1

Now dividing through by the normalisation condition found previously gives:

〈ψαlm|V̂ |ψαlm〉
〈ψαlm|ψαlm〉

=
2

5
2
+lα

3
2
+l

Γ(l + 3
2)
× e2Γ(l + 1)

−2l+2αl+1

= −e2 Γ(l + 1)

Γ(l + 3
2)

√
2α

To make things easier to calculate the kinetic energy term, we will first use separation of
variables to find the radial equation of the hamiltonian.

The time independent Schrodinger equation in spherical co-ordinates is:

− ~2

2m

[
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

(
∂2ψ

∂φ2

)]
+ V ψ = Eψ

We now substitute in ψ = R(r)Y (θ, φ) into the equation:

− ~2

2m

[
Y

r2
d

dr

(
r2
dR

dr

)
+

R

r2 sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

R

r2 sin2 θ

(
∂2Y

∂φ2

)]
+ V RY = ERY

Dividing through by RY and multiplying by −2mr2

~2 gives:
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[
1

R

d

dr

(
r2
dR

dr

)
− 2mr2

~2
(V − E)

]
+

1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

(
∂2Y

∂φ2

)]
= 0

The only way for this to be possible is if the radial equations and the angular equations
were both equal to a constant. Since we are dealing with a spherically symmetric system,
we will leave the angular equation alone and deal with the radial equation. Setting the
radial equation equal to the constant l(l + 1):

1

R

d

dr

(
r2
dR

dr

)
− 2mr2

~2
(V − E) = l(l + 1)

2

Rr

dR

dr
+

1

R

d2R

dr2
− 2m

~2
V +

2m

~2
E =

l(l + 1)

r2
R

− ~2

2m

(
d2R

dr2
+

2

r

dR

dr
− l(l + 1)

r2
R

)
+ V R = ER

So the radial equation of the kinetic energy term for the Hamiltonian is:

− ~2

2m

(
d2R

dr2
+

2

r

dR

dr
− l(l + 1)

r2
R

)

We can now calculate the expectation value for the kinetic energy term.

〈ψαlm|K̂|ψαlm〉 = 〈ψαlm
∣∣∣∣− ~2

2m

(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)∣∣∣∣ψαlm〉
=
−~2

2m

∫
R3

ψ∗
(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)
ψ d3r

=
−~2

2m

∫ ∞
0

(
d2R

dr2
+

2

r

dR

dr
− R(r)l(l + 1)

r2

)
r2R(r)dr

∫ π

0

∫ 2π

0
Yl′
∗m′

(θ, φ)Yl
m(θ, φ) sin θdθdφ

Computing the derivatives and simplifying gives:

=
−~2

2m

[∫ ∞
0
−4αlr2l+2e−2αr

2
dr +

∫ ∞
0
−6αr2l+2e−2αr

2
dr +

∫ ∞
0
−4αr2l+2e−2αr

2

]
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Using the subsitution, t = 2αr2 gives:

=
−~2

2m

[∫ ∞
0
−l t

l+ 1
2 e−t

2l+
1
2αl+

1
2

dt+

∫ ∞
0
−3

tl+
1
2 e−t

2l+
3
2αl+

1
2

dt+

∫ ∞
0

tl+
3
2 e−t

2l+
3
2αl+

1
2

dt

]

=
−~2

2m

(
−
lΓ(l + 3

2)

2l+
1
2αl+

1
2

−
3Γ(l + 3

2)

2l+
3
2αl+

1
2

+
Γ(l + 5

2)

2l+
3
2αl+

1
2

)
Dividing through by the normalisation condition gives:

〈ψαlm|K̂|ψαlm〉
〈ψαlm|ψαlm〉

=
−~2

2m

(
Γ(l + 5

2)

2l+
3
2αl+

1
2

−
lΓ(l + 3

2)

2l+
1
2αl+

1
2

−
3Γ(l + 3

2)

2l+
3
2αl+

1
2

)
× 2

5
2
+lα

3
2
+l

Γ(l + 3
2)

Here we use the recursion relation Γ(z + 1) = zΓ(z):

=
−~2

2m

(
(l + 3

2)Γ(l + 3
2)

2l+
3
2αl+

1
2

−
lΓ(l + 3

2)

2l+
1
2αl+

1
2

−
3Γ(l + 3

2)

2l+
3
2αl+

1
2

)
× 2

5
2
+lα

3
2
+l

Γ(l + 3
2)

Canceling the Γ(l + 3
2) terms and tidying the exponents gives:

=
−~2

2m
[2α(l +

3

2
− 2l − 3)]

=
~2

2m
(l +

3

2
)2α

So the expectation value of the Hamiltonian is found to be:

〈H(α)〉 =
~2

2m
(l +

3

2
)2α− e2 Γ(l + 1)

Γ(l + 3
2)

√
2α. (1)

2.2 Minimisation of Expectation Value

In order to minimise equation 1 we differentiate it with respect to α,

d〈H(α)〉
dα

=
~2

m
(l +

3

2
)−
√

2e2α−
1
2

2

Γ(l + 1)

Γ(l + 3
2)
. (2)

Setting equation 2 to zero and solving for α gives the value which corresponds to the ground
state energy level.
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~2

m
(l +

3

2
)−
√

2e2α−
1
2

2

Γ(l + 1)

Γ(l + 3
2)

= 0

√
2e2α−

1
2

2

Γ(l + 1)

Γ(l + 3
2)

=
~2

m
(l +

3

2
)

∴ α =

[
m
√

2e2Γ(l + 1)

2~2(l + 3
2)Γ(l + 3

2)

]2
We now substitute this value for α into equation 1 to find the ground state energy
level.

〈H(α)〉 =
~2

m
(l +

3

2
)

[
m
√

2e2Γ(l + 1)

2~2(l + 3
2)Γ(l + 3

2)

]
− e2 Γ(l + 1)

Γ(l + 3
2)

[
m
√

2e2Γ(l + 1)

~2(l + 3
2)Γ(l + 3

2)

]
〈H(α)〉 =

1

(l + 3
2)

[
Γ(l + 1)

Γ(l + 3
2)

]2[me4
2~2
− me4

~2

]

∴ 〈H(α)〉 = −me
4

~2
1

(l + 3
2)

[
Γ(l + 1)

Γ(l + 3
2)

]2

2.3 Forming the ratio

The accuracy of the approximation found can be measured by comparing it to the true
value of the ground state for the hydrogen atom which is given by:

E0,l =
−me4

2~2
1

(l + 1)2
.

So the ratio 〈H(α)〉
E0,l

is:

−me
4

~2
1

(l + 3
2)

[
Γ(l + 1)

Γ(l + 3
2)

]2
× 2~2

−me4
(l + 1)2

1

which simplifies to:
(l + 1)2

l + 3
2

[
Γ(l + 1)

Γ(l + 3
2)

]2
. (3)

This ratio is plotted against l in figure 1 to identify it’s behaviour at large values of l.
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Figure 1: For large values of l, the limiting value of the ratio is 1

As shown in figure 1, in the limit as l→∞, the ratio in equation 3 approaches 1, i.e.

lim
l→∞

(l + 1)2

l + 3
2

[
Γ(l + 1)

Γ(l + 3
2)

]2
= 1.

2.4 Manipulating Expression (4) to (5)

lim
l→∞

(l + 1)2

l + 3
2

[
Γ(l + 1)

Γ(l + 3
2)

]2
= 1

lim
l→∞

1

l + 3
2

[
(l + 1)Γ(l + 1)

Γ(l + 3
2)

]2
= 1

Since zΓ(z) = Γ(z + 1):

lim
l→∞

1

l + 3
2

[
Γ(l + 2)

Γ(l + 3
2)

]2
= 1
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Since Γ(m) = (m− 1)!:

lim
l→∞

1

l + 3
2

[
(l + 1)!

Γ(l + 3
2)

]2
= 1

Dealing with the denominator:

Γ(l +
3

2
) = Γ(l +

1

2
+ 1)

= (l +
1

2
)Γ(l +

1

2
)

= (l +
1

2
)(l − 1

2
)Γ(l − 1

2
)

= (l +
1

2
)(l − 1

2
)(l − 3

2
)...(

1

2
)Γ(

1

2
)

Since Γ(12) =
√
π:

Γ(l +
3

2
) = (l +

1

2
)(l − 1

2
)(l − 3

2
)...(

1

2
)
√
π

which leads to:

lim
l→∞

[
(l + 1)!

(l + 1
2)(l − 1

2)(l − 3
2)...(12)

√
π

]2 1

l + 3
2

= 1 (4)

Now to get the Wallis Formula, we first rearrange equation 4 to get:

lim
l→∞

[
(l + 1)!

1
2 ·

3
2 ·

5
2 · ...

(2l+1)
2

]2 1

2l + 3
=
π

2

We first deal with the numerator and notice that it can be expressed as:

(l + 1)! =

l+1∏
j=1

j
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However, since we have a 1
2 for every single term in the denominator, for each iteration of

j, there will be an additional factor of 2 in the numerator, giving:

(2(l + 1))! =
l+1∏
j=1

2j

But since it is squared, we will get:

(2(l + 1)!)2 =

l+1∏
j=1

(2j)(2j)

Since we have taken all the factors of 1
2 from the denominator to the numerator, the

denominator is now:

1 · 1 · 3 · 3 · 5 · 5 · 7 · 7...(2l + 1)(2l + 1)(2l + 3)

In terms of our iterator j, this line can be represented as (2j − 1)(2j + 1) which ensures
that it will terminate at 2l + 3. This completes the Wallis Product as we get:

l+1∏
j=1

(2j)(2j)

(2j − 1)(2j + 1)
=
π

2
(5)

3 Using the exact wave function

In this section, we will carry out the same procedure as before, except we shall use the
wave function:

ψ = rle−αrY m
l

3.1 Calculating the Expectation Value of the Hamiltonian

The expectation value will be given by:

〈H(α)〉 =
〈ψαlm|Ĥ|ψαlm〉
〈ψαlm|ψαlm〉

.
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Dealing with the denominator:

〈ψαlm|ψαlm〉 =

∫
R3

ψ∗ψ d3r

Substituting in our wave function rle−αrYl
m(θ, φ) in the form of R(r)Yl

m(θ, φ):

=

∫
R3

r2(R(r))2Yl′
∗m′

(θ, φ)Yl
m(θ, φ)d3r

=

∫ ∞
0

r2(R(r))2dr

∫ π

0

∫ 2π

0
Yl′
∗m′

(θ, φ)Yl
m(θ, φ) sin θdθdφ

=

∫ ∞
0

r2l+2e−2αrdr

Using the substitution t = 2αr

=

∫ ∞
0

t2l+2

22l+3
α2l+3e−tdt

=
Γ(2l + 3)

22l+3α2l+3

Now finding the expectation value for the potential energy term:

〈ψαlm|V̂ |ψαlm〉 = 〈ψαlm
∣∣∣∣−e2r

∣∣∣∣ψαlm〉
=

∫
R3

ψ∗
(
−e2

r

)
ψ d3r

=

∫
R3

(
−e2

r

)
(R(r))2Yl′

∗m′
(θ, φ)Yl

m(θ, φ)d3r

=

∫ ∞
0

(
−e2

r

)
r2(R(r))2dr

∫ π

0

∫ 2π

0
Yl′
∗m′

(θ, φ)Yl
m(θ, φ) sin θdθdφ

=

∫ ∞
0
−e2r2l+1e−2αrdr

Using the substitution t = 2αr:

= −e2
∫ ∞
0

t2l+1

22l+2α2l+2

= −e2 Γ(2l + 2)

22l+2α2l+2
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Now dividing the result by the denominator:

〈ψαlm|V̂ |ψαlm〉
〈ψαlm|ψαlm〉

= −e2 Γ(2l + 2)

22l+2α2l+2
× 22l+3α2l+3

Γ(2l + 3)

Using the recursion relation zΓ(z) = Γ(z + 1):

= −e2 Γ(2l + 2)

22l+2α2l+2
× 22l+3α2l+3

(2l + 2)Γ(2l + 2)

= − αe2

l + 1

We now find the kinetic energy term using the radial equation found in the previous
section.

〈ψαlm|K̂|ψαlm〉 = 〈ψαlm
∣∣∣∣− ~2

2m

(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)∣∣∣∣ψαlm〉
=
−~2

2m

∫
R3

ψ∗
(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)
ψ d3r

=
−~2

2m

∫ ∞
0

(
d2R

dr2
+

2

r

dR

dr
− R(r)l(l + 1)

r2

)
r2R(r)dr

∫ π

0

∫ 2π

0
Yl′
∗m′

(θ, φ)Yl
m(θ, φ) sin θdθdφ

Computing the derivatives and simplifying gives:

=
−~2

2m

∫ ∞
0
−2αr2l+1e−2αrdr +

−~2

2m

∫ ∞
0
−2αlr2l+1e−2αrdr +

−~2

2m

∫ ∞
0

α2r2l+2e−2αrdr

Using the substitution t = 2αr:

=
−~2

2m

∫ ∞
0
− t2l+1

22l+1α2l+1
e−tdt+

−~2

2m

∫ ∞
0
−l t2l+1

22l+1α2l+1
e−tdt+

−~2

2m

∫ ∞
0

t2l+2

22l+3α2l+1
e−tdt

=
−~2

2m

(
− Γ(2l + 2)

22l+1α2l+1
− l Γ(2l + 2)

22l+1α2l+1
+

Γ(2l + 3)

22l+3α2l+1

)

Dividing by the denominator gives:
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〈ψαlm|V̂ |ψαlm〉
〈ψαlm|ψαlm〉

=
−~2

2m

(
− Γ(2l + 2)

22l+1α2l+1
− l Γ(2l + 2)

22l+1α2l+1
+

Γ(2l + 3)

22l+3α2l+1

)
× 22l+3α2l+3

Γ(2l + 3)

Using the recursion relation zΓ(z) = Γ(z + 1):

=
−~2

2m

(
− Γ(2l + 2)

22l+1α2l+1
− l Γ(2l + 2)

22l+1α2l+1
+

(2l + 2)Γ(2l + 2)

22l+3α2l+1

)
× 22l+3α2l+3

(2l + 2)Γ(2l + 2)

=
−~2

2m

−Γ(2l + 2)

22l+3α2l+1

(
− 4− 4l + 2l + 2

)
× 22l+3α2l+3

(2l + 2)Γ(2l + 2)

=
~2

2m
α2

So the Expectation Value for the Hamiltonian is:

〈H(α)〉 =
~2

2m
α2 − αe2

l + 1
. (6)

Seeing as there is no gamma function in the Hamiltonian, it is unlikely that any further
analysis will yield any expression related to π or the Wallis Formula.

3.2 Minimising the expectation value

Differentiating equation 6 with respect to α gives:

d〈H(α)〉
dα

=
~2

m
α− e2

l + 1
. (7)

Setting equation 7 equal to zero and solving for α gives the value corresponding to the
ground state energy level as:

α =
me2

~2(l + 1)
.

Now substituting this value into equation 6 gives our minimum energy level as:

〈H(α)〉 =
−me4

2~2(l + 1)2
. (8)

Note that equation 8 is the exact result for the ground state energy level of the hydrogen,
which is expected since we used the true wave function for the ground state of the hydrogen
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atom. Therefore the ratio of the exact known result to equation 8 is going to be equal to
1, i.e.

〈H(α)〉
E0,l

= 1.

4 Why does the gaussian give a formula for π?

In a bid to answer this question, we use the variational principle to compute the ground
state energy level for the hydrogen atom using the general wave function

ψαlm = rle−αr
q
Yl
m(θ, φ). (9)

Doing so gives the ratio between the true ground state energy level and the computed
result in equation 9 as

4(l + 1)2)

[
Γ(2l+2

q )

]2
(2l + 1)(2l + 1 + q)Γ(2l+1

q )Γ(2l+3
q )

. (10)

To see how this ratio behaves in the limit as l→∞ for different q values, we produced the
plot in figure 2.

Figure 2: For large values of l, the limiting value of the ratio is always 1 for integer values
of q
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From figure 2, we can see that

lim
l→∞

4(l + 1)2)

[
Γ(2l+2

q )

]2
(2l + 1)(2l + 1 + q)Γ(2l+1

q )Γ(2l+3
q )

= 1 q ∈ Z.

However, the only case where a formula for π is even possible is when q = 2, as this leads to
half integer arguments in the gamma functions present in expression 10, which produces π.
However, this does not answer why the gaussian wave function yields the Wallis Formula, it
only confirms that it is the only one that can. In the following sections, we shall investigate
the relationship between Wallis Integrals and the Gamma Function and also the uniqueness
of Gaussians and the special properties that they have.

4.1 Wallis Integrals

In Wallis’ original proof for the product, he compared the values of Wallis Integrals,

Wn =

∫ π
2

o
sinn(x)dx, (11)

which can be represented using gamma functions depending on the parity of n. So if n is
odd, i.e. n = 2p+ 1, we get

W2p+1 =
p!Γ(12)

(2p+ 1)Γ(p+ 1
2)
, (12)

and if n is even, n = 2p, the Wallis integral is

W2p =
Γ(12)Γ(p+ 1

2)

2Γ(2p+ 1)
. (13)

The proof of the Wallis Formula is presented in the following section.

4.1.1 Proof using Gamma Functions

Proof. Firstly, we shall use integration by parts on Wn =
∫ π
0 sinn xdx as follows:
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∫ π
2

0
sinn xdx =

∫ π
2

0
sinn−1 x sinxdx

let u = sinn−1 x and dv = sinxdx and doing the integration by parts we get:

=

[
− sinn−1(x) cos(x)

]π
2

0

+

∫ π
2

0
cos2(x)(n− 1) sinn−2(x)dx

= (n− 1)

∫ π
2

0
sinn−2(x) cos2(x)

Since cos2(x) = 1− sin2(x),

Wn = (n− 1)

∫ π
2

0
sinn−2(x)dx− (n− 1)

∫ π
2

0
sinn(x)dx

This can be written in the Wn notation as:

Wn = (n− 1)Wn−2 − (n− 1)Wn

∴
Wn

Wn−2
=
n− 1

n
. (14)

Now note that for x ∈ [0, π2 ], we have 0 ≤ sinx ≤ 1, which means the following inequalities
are true for x ∈ [0, π2 ]:

0 ≤ sin2n+2 x ≤ sin2n+1 x ≤ sin2n x. (15)

In terms of Wn notation, the inequalities in equation 15 are:

0 ≤W2n+2 ≤W2n+1 ≤W2n. (16)

Dividing the inequalities in equation 16 by W2n we get:

0 ≤ W2n+2

W2n
≤ W2n+1

W2n
≤ 1. (17)
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From equation 14, we find that
W2n+2

W2n
=

2n+ 1

2n+ 2
,

which means that the inequalities in 17 become

0 ≤ 2n+ 1

2n+ 2
≤ W2n+1

W2n
≤ 1. (18)

Now,

lim
n→∞

2n+ 1

2n+ 2
= 1

and
lim
n→∞

1 = 1,

so by the inequality in equation 18 and the squeeze theorem, we get that

lim
n→∞

W2n+1

W2n
= 1. (19)

Substituting equations 12 and 13 into 19, we get:

W2n+1

W2n
=

n!Γ(12)

(2n+ 1)Γ(n+ 1
2)
× 2Γ(2n+ 1)

Γ(12)Γ(n+ 1
2)

=
2n!(2n)!

(2n+ 1)
[
Γ(n+ 1

2)
]2 (20)

Since the limit of expression 20 at large n is 1 (equation 19) this leads to the Wallis Formula
for π as follows:

lim
n→∞

2n!(2n)!

(2n+ 1)
[
Γ(n+ 1

2)
]2 = 1

Expanding the gamma function in the denominator using the recursion relation Γ(m+1) =
mΓ(m) gives

lim
n→∞

2n!(2n)!

(2n+ 1)

[
(n− 1

2)(n− 3
2)(n− 5

2)...(12)
√
π

]2 = 1
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Rearrange to take π over to right hand side and re-write the denominator as:

lim
n→∞

n!(2n)!

(2n+ 1)

[
(12 ·

3
2 ·

5
2 · ...(

2n−5
2 )(2n−32 )(2n−12 ))

]2 =
π

2

First note that the numerator can be expressed as:

n!(2n)! =

∞∏
j=1

j · 2j

However, since we have a 1
2 for every single term in the denominator, for each iteration of

j, there will be an additional factor of 2 in the numerator, giving:

(2n)!(2n)! =

∞∏
j=1

(2j)(2j)

Since we have taken all the factors of 1
2 from the denominator to the numerator, the

denominator is now:

1 · 1 · 3 · 3 · 5 · 5 · 7 · 7...(2n− 1)(2n− 1)(2n+ 1)

In terms of our iterator j, this line can be represented as (2j − 1)(2j + 1). This completes
the Wallis Product as we get:

∞∏
j=1

(2j)(2j)

(2j − 1)(2j + 1)
=
π

2
(21)

�

4.1.2 Where does it all fall apart?

Taking a close look at expression 20 in the proof, we see that ultimately what leads to the
formula for π is the presence of Γ(n+ 1

2) in the expression, where n is an integer. Comparing

17



this to our general ratio in equation 10, we see that the only way we get that is for the
case where q = 2. We can see it break down for other integer values for q quite quickly for
a number of reasons. Firstly, and most importantly, we do not get a gamma function of
the form Γ(n+ 1

2) where n is an integer, which is the only way to get π from these gamma
functions. It seems that this could be achieved by using q = 4 and q = 6, however we do
not get n as an integer, and even if we did, the remaining terms after using the recursion
recursion relation will be Γ(14) and Γ(13) which are transcendental, so no analytic solution
would be found, which is the second problem once we pass q = 2.

5 Conclusion

Following the procedure presented in [Friedmann and Hagen, 2015] using the exact wave
function for the ground state of the hydrogen atom did not yield the Wallis formula. In
fact no formula for π was found since as is expected from the variational method when the
true wave function is used, the exact energy eigenvalue for the ground state energy level of
the hydrogen atom was returned. This meant that the ratio formed that led to the Wallis
formula in [Friedmann and Hagen, 2015], was in this case, exactly 1. Consequently, the
result found in the original paper is artificial, and only arises due to the use of the Gaussian
wave function.
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