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Abstract

The theory of optimal transportation has given rise to a framework which
makes analysis of functions on the space of probability measures possi-
ble. In this thesis we study the optimal transportation problem, duality
methods to its solution and the continuous in time version of the prob-
lem. This time dependent formalism motivates a Riemannian structure
on the space of probability measures known as the Otto calculus. This
formalism is studied in detail and we review the application of it to the
theory of gradient flows. The deterministic optimal control problem is
outlined along with the dynamic programming principle as well as their
analogues in the stochastic control problem. We then investigate how the
framework of the Wasserstein space can be applied to the stochastic opti-
mal control problem of Mckean-Vlasov stochastic differential equations.
We recast this into a deterministic problem on the underlying probability
distribution of the process, and then the dynamic programming princi-
ple is used to construct an abstract form of a Hamiltonian which can be
minimized to find the optimal control.






Introduction

This research project is summarized into three stages. The first stage
is the study of the optimal transport problem whose solution moti-
vates the Riemannian structure that is named the Otto calculus. The
second stage is the study of both the deterministic and stochastic opti-
mal control problems, whose treatments are standard. For this reason,
we call this stage of the project the study of classical optimal control
theory. The third and final stage was the union of the first two stud-
ies in the investigation of stochastic optimal control of Mckean-Vlasov
stochastic differential equations (MKVSDEs).

The first stage of the project followed closely the course by Villani on
optimal transport [15], specifically chapters 1, 2, 5, 7, and 8, as well as
sections of [8] when necessary preliminary material on functional analysis
was required. The content of the first two chapters and the appendices
are mostly taken from these sources, however, in an effort to present a
first hand account, many of the original papers on optimal transportation
were consulted and referenced.

In Chapter 1 we introduce the optimal transportation problem in both
it’s strong and weak formulations, known respectively as the Monge and
Kantorovich problems. The Kantorovich duality is discussed in detail and
the existence results that were based of this duality are presented. The
Wasserstein metrics and properties of the Wasserstein spaces are then
studied as products of the solution to the optimal transport problem:;
their utility will be indispensable when we study the optimal control of
MKVSDEs. We finally present the Lagrangian formulation of the time
continuous optimal transport problem and discuss its solution.

Chapter 2 is dedicated to the study of the Riemannian structure on the
space of probability measures and it’s applications. We first present
the Eulerian formalism of the time-dependent optimal transportation
problem and use these results to prove the celebrated Benamou-Brenier
formula for their reformulation of the optimal transport problem, which



was performed in the framework of fluid mechanics. Drawing on this
formula, we formally present the Riemannian structure endowed on the
space of probability measures P,(R%). In closing the chapter, we briefly
outline various examples of applications of this calculus, showcasing the
enormous success of this formalism.

The second stage of the thesis reviews the classical theory of optimal
control problems, focusing on the use of the dynamic programming prin-
ciple (DPP) in deterministic and stochastic settings. As this theory is
already contained in numerous references in textbook form and is com-
pletely standard by now, we reference the textbooks as the sources used
and no literature review was performed.

In Chapter 3, the deterministic optimal control problem is introduced
and the DPP is presented. We give a formal derivation of the Hamilton-
Jacobi-Bellman (HJB) equation for the value function and the notion of
viscosity solution is discussed. We then move on to a brief treatment of
the stochastic control problem focusing on the DPP method. As our own
treatment of Mckean-Vlasov optimal control is based solely on the DPP,
and since the purpose of this chapter is to introduce the framework in
which we will be working, we make no attempt to study the Pontryagin
maximum principle.

The final chapter deals with the optimal control of MKVSDEs in the
framework of the dynamic programming principle. This is a new area of
research and so after introducing the problem we move on to summarize
the advances made in applying the DPP. Following this review, a mi-
nor variant of some of the ideas in the literature is presented as a new
approach to applying the DPP to this optimal control problem.

We present most theorems without proofs as they can be found elsewhere
and references will be given when required. However, some proofs are
given in the case when it showcases necessary concepts and ideas.
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Chapter 1

Optimal Transportation

In this chapter we will detail the Monge-Kantorovich problem and its so-
lution. We then introduce the p-Wasserstein distances which are induced
from the solution to the transportation problem, and study their proper-
ties when they are endowed upon the space of probability measures with
bounded p-moments. Finally the time dependent optimal transportation
problem is introduced from the Lagrangian point of view and its solu-
tion is presented. If no reference is given for a theorem or result, the
corresponding result is taken from [15].

1.1 The Monge Problem

In 1781, Monge was interested in finding the most economic way of mov-
ing a pile of soil to a mound [36]. Given points of masses {my, mo, ...},

at locations {zi,zs,...} in R® that needed to be moved to locations
{Y1,¥2, ...}, Monge was interested in finding a bijective map 7" : {z1, z9, ...} —
{Y1,¥2, ...} that minimized the weighted distance cost

NT) =Y mylz; — T(a;)]. (1.1)

This minimizing map is known as the optimal transport map. In his
memoir, he used geometric arguments to deduce that if an optimal map
does exist then it must be determined by a potential ¢. As stated in [10],
the precise contribution given by Monge was that if the optimal map T
exists, then it must satisfy



4 CHAPTER 1. OPTIMAL TRANSPORTATION

T(x) -z
——— = —D¢. (1.2)
T'(x) — =

A formal proof of (1.2) was given by Appell [3] in 1884, one hundred
years after the work of Monge.

A continuous, general version of the Monge problem can be restated as
follows. Let X and Y be measure spaces with probability measures p and
v respectively - these represent the pile of soil we wish to move and the
mound we wish to create. We define the cost function ¢ as a measurable
function ¢(z,y) : X X Y — RU {+o00}. Note that in Monge’s original
consideration, this was simply the weighted distance in (1.1). A transport
map T : X — Y is a measurable map such that v is the push forward of
w1 by T. This means that for any measurable set B C Y, we should have
that

v(B) = u(T~(B)), (1.3)

and we write v = T'#p. With the above defined, the Monge Optimisation
problem is to minimise

I[T] ::/Xc(x,T(x))du (1.4)

over all measurable maps T" that satisfy v = T#u. The solution to the
Monge Problem (1.4) is called the optimal transport map and the cost
assoociated with it is known as the optimal transportation cost. We will
denote the optimal transportation cost between probability measures p
and v by T.(u, v); ie.

T.(p,v) = inf I[T].

TH#u=v

1.2 The Kantorovich Problem

In 1942, Kantorovich [23] introduced the following relaxed version of the
Monge optimisation problem. We again consider two measure spaces
X and Y with probability measures p and v respectively. We define an
admissible transport plan 7 as a joint probability measure on X x Y that
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has marginals ¢ and v. This means that for all measurable sets A C X
and B C Y we have

[A X Y] = plA], 7[X X B] =v[B]. (1.5)

The set of all admissible transport plans will be denoted as IT(u,v).
Kantorovich’s minimisation problem is to minimise

] = /X clawin(a.y) (1.6)

for all m € II(u, ). He showed that a solution to his problem exists and
that it is indeed determined by a potential, as was argued by Monge in
[30]. In 1948, Kantorovich related his problem to the Monge optimization
problem [22] and showed that his results from [23] could be applied. In
fact, the Kantorovich problem is just a relaxed version of the Monge
problem. The Monge problem is more stringent in that it does not allow a
piece of mass at a point x € X to be split up and sent to multiple different
locations in Y. We can write the transport plans for the Kantorovich
problem in terms of the transport maps of the Monge problem as

dr(z,y) = du(z)oly = T'(z)], (L.7)

where ¢y = T'(z)] is the Dirac measure defined to be 1 if y = T'(x) and
0 otherwise.

Kantorovich only showed that the optimal transport plan 7 exists [22],
yet it was not shown if the solution could be represented as a map 7T :
X — Y. This was later done by Sudakov [13] in 1979. We also note that
Gangbo and Evans took a PDE approach to proving the existence of
optimal transport plans for the distance cost function (Monge’s original
problem) in [16]. Although these results are historically important as the
distance cost function was the original problem considered by Monge,
the case of the quadratic cost function, c(z,y) = |r — y[2, is the one
most widely studied and that is also found in many applications. The
first existence results in the case of the quadratic cost function relied
on studying the dual problem introduced by Kantorovich in the 1940’s,
which is the subject of our next section. Although the duality was first
used in the study of the quadratic cost function, in [10], the authors used
the dual problem to prove the existence of a minimiser for the Monge
problem with distance cost function.
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1.3 Kantorovich Duality

We begin this section by stating the Kantorovich duality theorem.

Theorem 1.3.1 (Kantorovich duality). Let X and Y be complete, sep-
arable metric spaces (Polish) and let p € P(X), v € P(Y). Take
c: X xY — Ry U{+4oc} to be a lower semi continuous cost function.

Now, for (¢,) € L'(du) x L'(dv) define

J(gb,@/}):/xqzﬁdy—i—/ywdy, (1.8)
and

O = {(¢,¥) € L'(dp) x L'(dv) : ¢(x) + 9 (y) < c(w,y)},
where the inequality holds for du—almost allx € X and dv—almost ally €
Y. It then follows that
inf Ilx] = sup J(¢,v). (1.9)

mell(p,v) () €D

The above theorem can be interpreted in terms of economics.

The owner of a chocolate company needs to ship a fixed amount of choco-
late to different confectionery stores across their town. If they do the
shipping themselves, it will cost ¢(z, y) to move one box of chocolate from
point x to y. This problem can be translated into it’s Monge-Kantorovich
problem and be solved.

However a shipping company will only charge a set cost ¢(z) to pick up
the boxes at some point x and ¥(y) to unload it at some point y, while
ensuring that the cost of shipping, ¢(z) + ¥ (y), will be less than ¢(z, y).

The Kantorovich duality theorem states that the shipping company can
adjust the prices so that it will cost the chocolate company the same
amount as if they had handled it themselves.

At least in the compact case, theorem 1.9 is a consequence of the Frenchel-
Rockerfella duality theorem. For definitions see the Appendix.

Theorem 1.3.2 (Frenchel-Rockerfella). For two convex functions on a
normed vector space E, o, : E — (—00, 00|, assume that there is some
zo € Dom(a) N Dom(B) such that « is continuous at xo. Then

inf {a(z) +5(2)} = fgg{—a*(—f) — A1)} = max{—a"(—f) = F(f)}-
(1.10)
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This theorem states that a minimization problem can be turned into
a maximization problem. Indeed, theorems like this are bountiful and
extremely useful. This particular type of statement is known as a min-
imax principle. The idea of a minimax principle is that it allows us to
write "min max” problems as "max min” problems, where the latter is
usually easier to solve. Indeed, this is the route taken to prove existence
of optimal transport plans which is done via the Kantorovich Duality.
The full proof of theorem 1.9 is too technical to present here. Rather, we
prove the result in a restricted setting and then sketch how to extend this
to the more general case by approximations. This proof is taken from
[15] and is presented here to showcase the power of duality methods in
optimal transportation.

Sketch of proof of Theorem 1.9. As a preliminary step, we show that we
can change what we need to show in the definition of ®. to restrict to
functions (¢,v) that are bounded and continuous. This restricted set
we will denote as ®. N Cy. Since . N C, C P, we automatically have

that Supg, e, J(6,¥) < supg, J(6,1). Now, since ¢(z) + 1(y) < c(z,y)
it follows that for = € II(u, v

~—

J(p,)) =

T~

ch(x)du + /Y Y(y)dv
(o(x) +¢(y))dn(x,y)

xY

—

IN

y c(x,y)dn(z,y)

n
~

7.

Hence, we get that supg_J(¢,1) < infry,,) I[r]. This means that if we
prove that supg ¢, J(¢,%) = infry,,) I[7], we get that it holds for @,
too.

We now show that the result is true when X and Y are compact and c is
continuous. In this case, it is a direct application of theorem 1.3.2. Let
E = Cy(X x Y) and note by Riesz Theorem that it’s dual space E* is
the set of all Borel measures on X x Y, which is denoted as M (X x Y).
Now, let us define o : Cp(X X Y) — R as the mapping

07 if U(ZL’,’y) Z _C(Ivy)

1.11
400, else ( )

u(z,y) — {
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and 5 : Cp(X xY) — R as the mapping

w(z,g) s {fX Gdp+ [y vdv, ulz,y) =@ +vW)

400, else

Now, « is the indicator function for a convex set and so it must be convex.
Furthermore, at u = 1, « is obviously continuous. On the other hand
[ is convex because it extends a convex function to infinity outside of
it’s domain. Hence, we can use the Frenchel-Rockerfella duality theorem.
Computing the convex conjugates of a and 3 we get that for 7 € E*

o () = {f c(z,y)dn(z,y), ifme M (X xY)
400, else

and

B4 () = {07 if [ (@) +v()dn(z,y) = [ S@)du+ [(y)dv

400, else

From 1.10 we can see that

inf {a(u) + f(u)} = sup {—a’(-m) — F'(m)}.  (L13)

TeE*

Now, by looking carefully at the piece-wise conditions in both « and
we see that

inf{a(u) + H(u)} = - S { / ¢dp + / ¢dV}

Furthermore, by looking at —a*(—m) — 8*(m) it is clear that

sup {—a*(=m) = 57} = - k. { [ cleintan },

TeE* H(M?”)

and so we arrive at the announced
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inf /X Yc(x,y)dﬂ(x,y): sup /X¢du+/ywdy. (1.14)

I(p,v) ®.NC,

To complete the proof, we extend this result to the general case by ap-
proximation arguments. A measure on a Polish space is automatically
inner regular [6] which means for § > 0 arbitrarily small we can find a
compact set K C X xY such that 7[(X x Y)\K]| < §. The idea is to use
the fact that the duality theorem holds on K and then extend it to the
rest of X x Y, and this will do away with the compactness assumptions.
Then, since any lower semi-continuous function can be approximated by
a sequence of uniformly continuous functions, we can express ¢ = sup ¢,
and by this approximation, the general result will follow. O

Remark 1.3.1. We note that there are more abstract and general spaces
in which the theorem holds, for example, the topological space is not
needed as shown in [11].

The first existence results for optimal transport maps were proven using
theorem 1.9, and these are the subject of the next section.

1.4 Existence of Optimal Transport Plans

In this section we briefly outline the existence results of optimal transport
plans, we first deal with the case of the quadratic cost and then we
mention the results for general cost functions.

1.4.1 The Quadratic Cost

For the quadratic cost, ¢(x,y) = |z — y|*, we have that the first existence
result was due to Knott and Smith [20] and then completed by Rachev
and Ruschendorff [12]. The important results from convex analysis used
in the proof and statement of the theorem are presented in the appendix.
The statements of the following theorems are taken from the text [15].

Theorem 1.4.1 (Knott-Smith). Let u and v be probability measures on
R™ that satisfy

/ |zdp < +o0, |z’ dv < +o0. (1.15)

Rn
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Then in the Monge-Kantorovich problem with c(x,y) = |x — y\z, T E
II(p, v) is optimal iff there exists a convex lower semi-continuous function
¢ such that

Supp(m) C Graph(0¢). (1.16)

Furthermore, (¢, ¢*) will be a minimizer of

inf {/ odp +/ wdv; N(x,y) such that x -y < ¢(x) + @/)(y)} .
n Rn
(1.17)

Brenier [7] achieved the following result for the case of the quadratic cost
and when X =Y =R%

Theorem 1.4.2 (Brenier). Let p and v be probability measures on R”
that satisfy (1.15). If u is absolutely continuous to the Lebesque measure
on R", then there is a unique optimal 7 of the form

7= (Id x V§)#u, (1.18)

where NV ¢ is the gradient of a convex function, that is uniquely determined
dp-almost everywhere, such that v = Vo#u and it holds that

Supp(v) = Vo(Supp(u)).

The above theorems were proved using the Kantorovich duality theorem.
However, Brenier’s theorem was later proved without relying on the du-
ality theorem by Gangbo [18] and then later by McCann [31]. In the case
of a smooth Riemannian Manifold, McCann [33] showed that theorems
1.4.1 and 1.4.2 hold.

Remark 1.4.1. The condition that p is absolutely continuous to the
Lebesgue measure is rather strong and is not necessary, although this is
the assumption contained in [7]. We can replace this with the weaker
assumption that p should not give mass to small sets meaning that it
does not give mass to sets of Hausdorff dimension n— 1, whose definition
s given in the appendiz.
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1.4.2 General cost functions

Other than the case of the quadratic cost function and the distance cost
function, Gangbo and McCann showed the existence of optimal transport
maps for strictly concave and strictly convex costs in [19]. Again, all
necessary definitions are found in the appendix.

Theorem 1.4.3 (Strictly Convex Costs). Let ¢ be a strictly convex,
super-linear cost on R™ and let i, v be probability measures on R™ and we
require that the total cost of transportation between them is not identically
infinity and that p is absolutely continuous to the Lebesque measure. Then
there exists a unique optimal transport plan for the Monge-Kantorovich
problem and it is of the form ™ = (Id x T)#u where T is uniquely
determined du almost everywhere by T#Hupu = v and

T(z) =z = Vc(Vo(r))
for some c-concave function ¢.

Theorem 1.4.4 (Strictly Concave Costs). Let ¢ be a strictly concave
cost on R™ and let i, v be probability measures on R™ and we require that
the total cost of transportation between them is not identically infinity
and that p does not give mass to small sets. Furthermore, if p and v are
singular to each other, then there exists a unique optimal transport plan
for the Monge-Kantorovich problem and it is of the form m = (Id X T)#u
where T' is uniquely determined du almost everywhere by T#p = v and

T(x) =2 — (Vo) (Vo(z))

for some c-concave function ¢.

1.5 Wasserstein Distances

Using the optimal transportation cost, 7,(u, v) corresponding to the cost
function ¢(x,y) = |x — y|, we can define the Wasserstein distances which
are metrics on the space of probability measures with bounded moments
of order p, P,(R™). This is the subject of the following theorem.

Theorem 1.5.1 (Wasserstein Distances). Let u, v be two probability mea-
sures on R™. For all p € [1,00), W,(u1,v) = T, (i, )P is a metric on
P,(R™). If p€[0,1) then W,(u,v) = T,(p,v) is a metric on P,(R™).
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From here on, we call the metric W), the p-Wasserstein metric and the
space Py(R™) endowed with this metric the p-Wasserstein space. In par-
ticular, W5 is called the quadratic Wasserstein metric and the the space
P5(R™) is endowed with W is called the quadratic Wasserstein space, or
simply, the Wasserstein space.

As stated in the introduction, the main contribution which we take from
Optimal Transportation is the structure it gives on the space of proba-
bility measures. The remainder of this section is devoted to examining
the properties of the Wasserstein metrics and the Wasserstein space. The
first property which we state is that the metrics are bounded by the total
variation measure.

Proposition 1.5.2 (Wasserstein Distances are bounded). Let u,v €
P,(R™). For p>0 and any xo € R™ we have that

To(p, v) < max(1,2°71) / |zo — z|Pd|pn — v|(z) (1.19)

What this tells us is that the optimal transportation cost is bounded by
the total variation norm, that is, the Wasserstein distances are controlled
by the total variation distance.

The Wasserstein distances also meterize weak convergence in the sense
that convergence in the W, metric is equivalent to the notion of weak
convergence. We recall that a sequence of measures in (u,) C P(R")
converges weakly to pu if for all ¢ € Cy(R™),

lim gbdun:/ odp.
R’I’L

n—00 Jpn

Theorem 1.5.3 (Wasserstein Distances and Weak Convergence). Let
p € (0,00) and (ug)ken be a sequence of probability measures in P,(X).
For some p € P(X), Wy(pk, i) = 0 as k — oo iff pux — p in the weak
sense and () satisfies for any

lim lim sup/ d(xg, x)Pdug(z) = 0. (1.20)
d(zo,x)>R

R—=00 00

Although we have introduced these distances for general cost, |z — y|?,
from here on we will only be interested in the quadratic cost, p = 2.
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1.6 Time Dependent Formulation

The Monge-Kantorovich problem we introduced does not depend on time,
it is only a function of the start and final locations, what happens in be-
tween is not important. For the time dependent formulation of the prob-
lem, we are interested in the trajectory of each particle at each point z.
To this end, at each point x € X we will attach a trajectory (T;(x))o<i<1
and then we define C[(T;(x))o<t<1] to be the cost of this transport. With
this notation, the time dependent minimization problem becomes finding

lnf{/XO[(ﬂ(ZE))OStgl]d/,L([E) ’ T() = ]d, Tl#,u = V}. (121)

The time independent and time dependent problems are compatible if

c(x,y) = inf {C(z)o<t<1]; 20 =2, 21 =y}. (1.22)

This condition really asserts that up to trajectories defined on null sets,
each trajectory (7i(z))o<t<1 is optimal. Now using this compatibility
condition we have that the quadratic cost function, c¢(z,y) = |x — y|2 in
the time dependent formulation is

Cf(=)] = / 5t (1.23)

where Z; is the derivative of the trajectory z; with respect to time t.
This form of a cost function in the time dependent formulation is very
common. In fact, for any cost that can be written as c(z,y) =: c(x — y)
we have that

Cl(z)] = /0 c(%)dt.

In these cases, ¢(z) is called a differential cost and for any convex cost we
have that the minimizing trajectory is a straight line. Indeed by Jensen’s

inequality,
1 1
/ c(Z)dt > ¢ (/ z'tdt> =c(y — z), (1.24)
0 0



14 CHAPTER 1. OPTIMAL TRANSPORTATION

and this is the value of the cost when we choose the trajectory to be

2= (1-t)r+1y,

a straight line between x and y. This result is contained in the following
proposition.

Proposition 1.6.1 (Convex costs admit straight lines as optimal trajec-
tories). If ¢ is a convex cost function of R™ then

in {/01 CEVdt: = a2 = y} Cew—y).  (1.25)

We know that that at time ¢ = 0, the trajectory is just the identity,
that is, To(x) = x. At time ¢ = 1, theorem 1.4.3 tells us (under suitable
assumptions) that the map has to be T1(z) = 2 — V*(V¢(z)) for some
c-concave function ¢ which satisfies (Id — V' (Vo(z)))#pn = v. Then,
from proposition 1.6.1, we get that the optimal trajectory for a convex
cost will be

Ti(z) =2 -tV (Vo(x)).

We make this precise in the following theorem.

Theorem 1.6.2. Consider the cost function given by c(x,y) = c(x—y) in
R™ where ¢ is strictly convex and c¢(0) = 0. Let p and v be two probability
measures on R™ that are absolutely continuous to the Lebesque measure,
and let C[(z)] = fol c(Z)dt. If Vo is the gradient of a c-concave function
such that (Id — V" (Vo(x)))#u = v, then

Ti(z) =2 —tVc' (Vo(z)) (1.26)

is the solution to the time dependent optimal transportation problem.

Now we restrict our discussion to that of the quadratic cost c(z,y) =
|z — y|* and what follows will be a short summary of McCann’s work

[32].
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1.6.1 Displacement Interpolation and Displacement
Convexity

In the case of the quadratic cost, the solution to the optimal transporta-
tion problem is

oo = [l = [(1 — DI + V)4, (1.27)

where 1 and v do not give mass to small sets and so V¢ is given by
Brenier’s theorem 1.4.2. This is known as McCann’s interpolation and
defines a family of probability measures that interpolate between p and
v such that

Wa(p, pr) = tWa(p, v). (1.28)

Now we wish to study how a functional of p; varies with time. To do this
we introduce some definitions and notation.

Let P,.(R™) be the set of absolutely continuous probability measures on
R™ and we identify each p € P,.(R™) with it’s Lebesgue density such that

dp(z) = p(z)dz.

Definition 1.6.1 (Displacement Convexity). P C P,.(R™) is displace-
ment convez if for all p,v € P, for allt € [0,1] py = [u,v]; € P.
Furthermore, given a displacement convex subset P, the functional F :
P — R U {+o0o}, is (strictly) displacement convex on P if t — F(p:) is
(strictly) convex on [0, 1].

An example of a typical functional is

Fp) = / Ulpla))dr, (1.29)

and in [32], McCann studied this functional and others where he gave
criteria for these functionals to be displacement convex. He then used his
notion of strict displacement convexity to prove that there exists a unique
ground state energy level of a physical system. This example showcases
a successful application of optimal transport. However, our reason for
presenting these results is that this notion of convexity is the one used
to define convexity of functionals on the Wasserstein space. This will be
related to the Riemannian structure we introduce in the next chapter.
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Chapter 2

The Otto Calculus

We now introduce the differential view of optimal transport. We first
begin with the reformulation by Benamou and Brenier and then introduce
the Otto Calculus and finally discuss examples of its use.

2.1 Eulerian Perspective

In the last chapter, we concluded by introducing the time dependent
optimal transportation problem where the problem was to find optimal
trajectories which transported p to v. We remark that the view we con-
sidered before, in which we studied trajectories of the particles, was the
Lagrangian point of view. In this section, we are interested in develop-
ing a field theory, that is, we want to characterize the optimal trans-
portation in terms of a velocity field which dictates how the particles
move. Obviously, the velocity field must be related to the trajectories by
v(t,z) = 4t in fact, this is how you switch between the Eulerian and
Lagrangian perspectives. Assuming that we have a family of optimal
trajectories (T})o<t<1, the intermediate configuration of the mass while it
is being transported at time ¢ is given by p; = Ti#p. We would like to
answer the following questions:

o What is the evolution equation for p,?

» Can we characterize the optimal trajectories?

We have already answered these questions in section 1.6; proposition
1.6.1 gives us the optimal trajectories and theorem 1.6.2 gives us how 7;

17
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evolves, from which the evolution of p; can be easily deduced. We stress
that the answers we now seek must be in terms of the velocity field v(¢, x),
giving us an Eulerian description of the optimal transportation problem.
The reason for doing so is that this Eulerian view gives us a Riemannian
structure on P(R™) which has found utility in many applications.

We answer the first question in the following theorem.

Theorem 2.1.1 (Evolution equation for trajectories). Consider the time-

dependent mass transportation on R"™ and let (T})o<i<1 be a locally Lip-

schitz family of diffeomorphisms in R™. Let v = v(t,x) be the velocity
dT;

field associated with the trajectories, that is <3t = v(t,x). Then, for

€ P(R™), p := Ti#u is the unique solution to

{atp +V - (pv) =0 inC([0,T]; P(R"))
Po = H

(2.1)

in the sense of distributions, where P(R"™) is endowed with the weak
topology.

The notion of weak solutions to PDEs is handled in the Appendix, refer
to the definitions therein for the notion of ”in the sense of distributions”.
Again this proof is taken from [15].

Proof. We will only show that p; satisfies (2.1) in the sense of distribu-
tions. Uniqueness is handled by a duality argument and can be found in

[45].

We first show that the map ¢t — fR” ¢dp; is continuous.

To do this we note that for ¢ € D(R"), by the definition of the push

forward measure,
/cbdpt:/cboTtdﬂ,

and we note that this map inside the integral on the right is Lipschitz
since both ¢ and T} is Lipschitz. Now, take a sequence t, — t, and
note that since ¢ is uniformly bounded, so is ¢ o T;,. By the Lebesgue
dominated convergence theorem

lim [ ¢dp;, = / lim ¢ o Ty, du (2.2)
n—oo n—o0

~ [ooTid (2.3)
- [ sdpu. (2.4)
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Then, using the definition of the derivative,
1 o ¢ o Tyn(x) — ¢ o Ti(x)
lim - ( / bdprn — / ¢dpt> = lim / - i

Now, since the map is Lipschitz, the quotient inside the integral on the
right hand side is uniformly bounded, and so by the Lebesgue Dominated
Convergence Theorem, we can pass the limit inside the integral and we
get that

lim
h—0

¢poTin(z) —¢poTi(x) d
/ n du—/aqﬁoTtdu

applying the chain rule

- [(voon)- oty
:/(VcboTt) ~vp o Tidp
= /V(b-vtdpt

—— [ 6d(9 - (o)

where we used the duality definition of the V operator as discussed in
the appendix. Il

We now proceed to answer the second question and characterize the
velocity fields which will give us optimal trajectories. First recalling that
for convex costs, the optimal trajectories are straight lines, we can begin
with the fact that the acceleration of the particles on the trajectories
must be zero. Using the chain rule we can see that

_ %(EI) = i(v(Tt(x))) = 0 (Ty(z)) + Vo(Ti(2)) - v(Ty(x)).

0
dt

Hence, we have that optimal velocity fields are solutions to the PDE

ow~+v-Vu=0.
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With this, we can fully specify the Eulerian system of time dependent
mass transportation. The trajectories and corresponding velocity fields
must solve

0

at’U‘l"U'V?J:O.

Now the final task is to specify what role the cost function plays in this
perspective. Within the light of theorem 1.6.2, we can see that we will
have optimal transportation for the cost ¢ if and only if

v(0,2) = =V (V)

for some c-concave function .

We note that our entire justification of the Eulerian point of view was
done using the far simpler Lagrangian perspective, and it is only pre-
sented here as to lay the foundations for the Otto calculus we are working
towards. In the next section, we use this Eulerian perspective here to
introduce a reformulation of the time dependent optimal transportation
problem in the language of fluid mechanics.

2.2 The Benamou-Brenier Formulation

Consider that you have a collection of particles that have some density
distribution pg at time ¢ = 0 and p; at time ¢ = 1. Let the position of the
particles be modeled by the function X = X (¢) and suppose that there
is some velocity field v; = v(t, X) in the region of the particles such that

dX
— = . 2.6
LI (26)
If 2.6 is uniformly Lipschitz, Cauchy-Lipschitz theory guarantees a well
defined flow for ¢t € [0,1], i.e. unique solutions exist for each different
initial condition xy. So with this, we have a unique trajectory of a particle
starting at a position xy, call it X, .

Since the map (xo,t) — X,,(t) is Lipschitz and one to one (by uniqueness
of the solutions), we have that the density of the particles evolve as weak
solutions of the continuity equation
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9y(pt) + Va - (prve) = 0. (2.7)

The particles have kinetic energy
B = [ pl@ulo)ds, 2.9

R

and so the action of the velocity field is

Apl = [ ([ @) dayar (2.9

The Benamou-Brenier minimization problem is to minimize the action
Alp, v] over all possible families of densities and velocities (p,v) = (pt, V)scpo,1]
that satisfy the following 5 conditions:

p e C([O, 1] W ok _Pac);
« v E Lz(dpt(x)dt);

* Usepsupp(py) is bounded;

9,(pt) + Vi - (prvy) = 0 in the distributional sense;

* p(x,0) = po(x) and p(z, 1) = pr(z).

In reality, these 5 conditions are very natural physical considerations. For
example, the first and last conditions ensure that we have a continuous
transformation of the particles that begin with the initial configuration
and end with the final configuration. The second condition ensures that
the kinetic energy is not infinite: a physically impossible scenario, while
condition 3 ensures that the particles don’t disperse out to infinity. The
set of (p,v) that satisfy these 5 conditions is called V(po, p1). The fol-
lowing formula is due to the work of Benamou and Brenier at the end of
the 90’s [0].

Theorem 2.2.1 (Benamou-Brenier Formula). Let py and p; be two com-
pactly supported absolutely continuous probability measures on R?. Then

T2(po, 1) = nf {Alp, v]; (p,v) € V(po, p1)} - (2.10)
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We first remark that the velocity fields and probability measures need not
be smooth. Indeed, the proof presented in [15] first proves it in the case
of smooth velocity fields and then uses a mollifying argument to reduce
to the case of smooth velocity fields. We re-write the proof assuming
that the velocity field is globally Lipschitz continuous, so as to bypass
the use of mollifiers and to keep the main ideas of the proof unobscured.
We present the proof here as it ties together all the considerations of the
previous sections and leads us to the main subject of this chapter, the
Otto calculus.

Proof of theorem 2.10. The idea of the proof is to first show that

Ta(po, p1) < inf {Ap,v]; (p,v) € V(po, p1)},

and then construct a pair (p,v) € V(po, p1) such that the minimum is
attained, that is, Alp,v] = Ta(po, p1)-

We begin by noting that since v is Lipschitz continuous, the trajectories
Ti(z) can be defined as the solution to £7;(z) = v,(T,(z)), with Ty(z) =
x. From our assumptions on V' (pq, p2) and theorem 2.1.1, we can write
that p; = Ty#po. Then,

_ /01 / pu() s () [Pdadt
= [ [ m@tan@a
= [ ] P o Tt
//nﬂo (T >>| drdt
[ el

Since v € L*(dp;(z)dt) we use Tonelli’s theorem and hence Fubini’s the-
orem to exchange the integrals

Z/npo(ﬂf)/ol

dxdt

)

2
dtd
dt o
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By Jensen’s inequality

2
dx

/ |T1 — x|’ da

> T2(po, p1).

_Tt( )dt

We now construct a (p, v) such at A[p,v] = T2(po, p1). Given the time in-
dependent optimal transport problem between py and p; for the quadratic
cost, our assumption that these are absolutely continuous allows us to
use Brenier’s theorem to conclude that there exists an optimal transport
map T = V¢, and since ¢ is convex we have that (V¢)™' = V¢* (see
appendix). We now construct

Ti(z) = (1 — t)x + tVe(z), (2.11)
pe = Ti#po, (2.12)

and finally
v(z) = (T — Id) o T; . (2.13)

From the proof of theorem 2.1.1, it is easy to see that the above defined
pr and v; solve the transport equation in the sense of distributions. So
by definition of push forward measure we can write

[ r@l@)ds = [ (T~ 10) o T, @oT)dpa) = [ ola) (o)~ af'de

Since this is true for all ¢, integrating over time doesn’t change this and
so we get that A[p,v] = Ta(po, p1)- O

This formula is nothing but the square of Ws. Otto [37] used this to
develop what we now call the Otto Calculus, which was inspired by his
study of dissipative equations [37].

2.3 Formal Presentation of Otto Calculus

The aim of this section is to define a metric structure on the tangent
space T,P for each p € P(R"). We further require that the norm given
by this metric structure recovers the squared Wasserstein distance
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1
vﬁwmmwﬂM{/
0

In fluid mechanics, we view p(t) as the density of particles evolving with
time under some velocity field v(t), we will use this to define what ele-
ments of the tangent space T}, P look like. Now, p must satisfy

ap|?

ot

dt; p(0) = po, p(1) = pl} :

p(t)

dp
L =_V.(p),

T (pv)

and so we expect the tangent space to be the space of probability densities
with the form —V - (pv). Since we wish to only consider physically

admissible velocity fields, i.e the ones that give finite kinetic energy,

/|v|2dp < 00,

we will require that v € L?*(dp; R"). With all these considerations, we
define the norm of the tangent vector at p € P(R") to be

op |’ : . Op
ot|l f oy : =0}. 2.14
%0~ e {oba 2 =o} e

From a physical perspective, this is a very natural definition. It says that
the norm of the tangent vector to an evolving density of particles, is the
lowest possible kinetic energy given by an admissible velocity field. The
admissible conditions here are that you cannot have a velocity that gives
you an infinite kinetic energy and the velocity must satisfy the continuity
equation. When p is smooth and positive, the characterization of optimal
velocity fields can be formally derived by considering a small perturbation
to a minimizing velocity field, vg. This perturbation is taken to be ew/p
where w is a divergence free vector field and € # 0. We first note that
vo + ew/p satisfies the continuity equation as

—V - [p(vo + ew/p)l = =V - (pvg) — €V - w = =V - (pvg) = Iyp.

Now, since vy is the minimizing velocity field, it follows that

/mmfs/m%+awm%
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and so we get that

/p|vo|2 < /p|vo|2+/2€vo-w+/62lw|2/p.

For € > 0, we re-arrange and divide by € to get

OS/Qvo-w+/6\w\2/p,

and finally letting e — 0, we arrive at

Og/vo-w.

Repeating the same argument for e < 0, we get that

/vo-wzo.

Hence, vy should be orthogonal, in the L? inner product, to the set of
divergence free vector fields. This means that vy has to be a gradient,
i.e. Vg = VUo.

2.4 Riemannian Structure

We now have a Riemannian structure on the space of probability measure
P(R™) with the norm defined in (2.14). Using (2.14) and the polarization
identity, we can define the metric on the tangent space at p. Take two
elements of the tangent space g L and 8” that have optimal velocity fields

Vu, and Vus.
2
(e )

p (|Vur + Vus|* — |Vuy — Vu|?) d

2 dp  Op
oty Oty
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With this metric, the geodesics have length given by W,. Furthermore,
geodesics are the McCann’s displacement interpolation, and geodesic con-
vexity in this Riemannian structure is McCann’s displacement convexity.

Now that we have this metric, we have that the gradient of functions in
this setting is

oF
Qmmfﬂﬁz—v-wvgz% (2.15)
where %—1: is grad;» ' which is defined by
oF d
- = |—F —0- 2.1
[ o) = |0+ )] 1 (2.16)

The subscript W is to signify that the gradient and inner product are
those associated with the quadratic Wasserstein space.

Since we identify measures with their (Lebesgue) densities, and these
measures have bounded moments of order 2, we can take F(p) to be a
functional on L*(R") and so in this case DF = ‘;—1; as above.

As elements of T}, P, by the Otto Calculus we must have optimal velocities
Vu; and Vuy such that

grady F(p) = =V - (pVuy),

and

Op ==V - (pVuy).

Now by definition of the gradient we require that

(grady, F'(p), Oip) = (DF, 0yp) 12

F
= /6—0tpd93
op

OF

OF
= /V%VUQﬂ(I‘)dI,
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where the last follows after integrating by parts. By definition of the
metric on the Wasserstein space we get that

(grady, F(p), Owp) = /Vu1Vu2p(x)dx.

Comparing these two expressions we can see that Vu; = V‘;—i and so it
follows that

oF
grady F'(p) = =V - (pVuy) = =V - (pv(s_p)’

which, at least formally, justifies (2.15).

These formal considerations are made rigorous in [1] in which a geomet-
ric notion of derivative on the Wasserstein space is given in terms of
sub/super differentials.

We now present some already well established applications of the Otto
Calculus.

2.5 Applications to Gradient flows

There are many physical systems that arise as the gradient of the energy
functional of the system. An important class are gradient flows

dX
— = —gradE(X) (2.17)
dt

where E(X) is the energy functional. A simple example of a gradient
flow is the heat equation

ou

=V

ot o
which is the gradient flow of the energy functional E(u) = ||Vul7, with

respect to grad;.. However, the heat equation is also the gradient flow
of the energy functional
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E(p) = / plog(p), (2.18)

with respect to the Riemannian structure given by optimal transporta-
tion, specifically the W5 metric. Indeed, using (2.15),

P —adE(p)
=V (V)
=V - (pV(log(p))
V() (2.19)
= V?p. (2.20)

There are many other important examples of gradient flows with respect
to this Otto Calculus, including the linear Fokker-Planck equation

)
8—? = V2p+ V- (pVV) (2.21)

which is the gradient flow of the energy functional

E(p) = /plogp+/pV (2.22)

This equation was studied via a time-discretization approach in [10] and
does not rely on the notion of a gradient, or any underlying Riemannian
structure. We present here a generalized scheme to approximate the
gradient flow of an energy functional in any abstract metric space.

We first need to discretize the time domain, and for that we introduce
the time discretization variable 7 and then define a sequence

d(X7, X)?

X=X X" =argmin[E(X) + 5
-

.

The Euler-Lagrange equation in the Euclidean setting for the equation
of X" is



2.5. APPLICATIONS TO GRADIENT FLOWS 29

n+1 n
X+l X
T

= —grad B(X;"™),

which is a time discretized version of the gradient flow. In general, Otto
showed in [37] that the time discretization introduced is indeed that of
the gradient flow.

We then define the piece wise constant function
X; = Z X:X[nT,(n—l-l)T} .
n

Passing to the limit 7 — 0 of X, we recover what is known as the gen-
eralized gradient flow. Obviously, one has to check that we can actually
pass the limit in each case, which requires various estimates, all of which
are covered in [15].

Although there are many examples of gradient flows in the Wasserstein
space, in this thesis, we are particularly interested in that of the linear
Fokker Planck equation, which is also known as the Kolmogorov forward
equation. For our study of stochastic optimal control, we note that the
classical SDEs introduced in the following chapter admit a probability
density that evolves under the Kolmogorov forward equation. In light
of this, the probability measure of the state of the process evolves as a
gradient flow in the Wasserstein space. This is however, not true for the
Mckean Vlasov case, due to the co-efficients dependence upon the prob-
ability measure. In the classical case, this time discretization discussed
gives insight into numerical methods that can be used to numerically
solve for the underlying probability distribution as carried out in [29].
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Chapter 3

Classical Control Theory

The content of this chapter is standard by now and is contained in many
references. The sources used in constructing the following exposition are
[17,46] as well as the lectures by Andrzej Swiech in Tohoku University

[44]-

3.1 Deterministic Control

In this section we introduce the deterministic optimal control problem
and the dynamic programming principle.

3.1.1 The Control Problem

An ODE of the form

'(t) = f(t,z(t)),

could describe the natural motion of a system, like a pendulum for ex-
ample. Now let us consider the case where we don’t want our system
to evolve naturally but rather we would like to control how it evolves or
what it’s final state would be. With the pendulum example for instance,
we may wish to control it’s motion so that it’s final state is upside down,
i.e. it is at an angle of 7 from the vertical. In other instances, we may
be given the initial position and some cost function to minimize. In this
case, we would like to control the trajectory so that the total cost is

31
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a minimum. In cases like this, we introduce the controlled differential
equation

o) — (3.1)

{x’(s) — f(s,2(s),a(s)) s€(0,T)
where f : R” x A — R" is bounded and Lipschitz continuous, and A is
a compact subset of R™. We note that the function «(-) that f depends
on is defined on the interval [0, 7] and is called the control and takes
values in A. This control selects parameters from A that adjusts how the
state of the particle evolves over time. In practice, we would only like to
deal with certain types of controls and so we must introduce restrictions
on which types of controls we will consider. In this particular case, we
will be content with considering controls which are measurable. With
this restriction, we obtain a set of controls which we call the admissible
controls, which we denote by A.

In light of Cauchy-Lipschitz theory (Appendix), the assumptions on f
ensure the existence and uniqueness of solutions to 3.1 for a fixed control
a € A, we will denote this solution as z(-) := x(-; a(-)), and we will call
it the trajectory of the system. The notation x(t; a()) asserts we fix some
« and that x is a function of £. The aim of the control problem is, given
some initial position z, find the control o*(-) that adjusts the dynamics
of the system so that the cost functional

J(a; zo, to) = /t r(z(s),a(s))ds + g(x(T)), (3.2)

is minimized, where r : R® x A — R is the running cost and ¢ : R® - R
is the terminal cost, are bounded as well as Lipschitz continuous in x. In
(3.2), we note that z(-) is the solution to (3.1) with the control a() and
xo is the initial state of the trajectory at time ty; although this notation
seems redundant it will be useful to specify which initial value problem we
are considering when we introduce the dynamic programming principle,
the subject of the next subsection.

3.1.2 Dynamic Programming

To solve this control problem, we will make use of the dynamic pro-
gramming principle (DPP). We first introduce the value function defined
as
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v(y, s) = it J(zy,s). (3.3)

This can be thought of as the minimum cost for a trajectory starting at
position y € R™ at time s € [0,7] and we note that the minimum cost
associated with our optimal control problem (3.1) is given by v(x,t). The
value function satisfies the following dynamic programming principle.

Theorem 3.1.1 (Dynamic Programming). For each h > 0 such that
t+ h <T, we have that

t+h
v(x,t) = inf {/t r(z(s),a(s))ds +v(x(t + h),t + h)} . (3.4)

a()eA

where x(-) solves (3.1) for the control af(-).

For a proof, see [17]. From the dynamic programming principle, at least
formally, we can derive a PDE that the value function must satisfy. Here
we will present the formal derivation, as it will motivate our methods in
the following chapter.

3.1.3 A formal derivation

We first re-write the dynamic programming principle using an infinitesi-
mal change in time dt as

v(x,t) = a%r)léﬂ {r(z(t),a(t))dt +v(x(t +dt),t +dt)}. (3.5)

Re-arranging (3.5) and dividing by dt we get

v(@(t + dt),t + dt) — v(w, 1) } —0.  (36)

inf {r(:c(t),a(t)) + o

a-)eA

Now taking the limit as dt goes to zero in (3.6), it follows that

inf {T(:B(t), a(t)) + %U(Ilf,t)} =0. (3.7)

o(-)eA

By the chain rule we can write
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%v(af;,t) = (Dv(z,t),0x) + 0w = (Dv(x,t), f(z(-), (")) + Ow.

Substituting this into (3.7) and noting that d;v does not depend on «,
we arrive at

Ow(zx,t) + inf {r(z(t),a(t)) + (Dv(z,t), f(z(-),a(-)))} =0. (3.8)

a()eEA

By substituting ¢ = T into the definition of the value function (3.3),
we can see that we have a terminal value condition of v(z,T) = g(x).
Putting these together, we arrive at the following terminal value problem

{atv(x,t) + infoyea {r(z(t), a(t)) + (Dv(z,t), f(z(),a(-)))} =0 in [0,T) x R"
v(z,T) = g(x) on {T} x R"
(3.9)

which is called the Hamilton Jacobi Bellman equation for this optimal
control problem. This is a particular type of Hamilton Jacobi equation,
where the Hamiltonian is

H(Du(x(t),t),z) = inf {r(z(t),a(t)) + (Do, 1), fx(), o)}

a(-)eA

We note that PDE (3.8) is all one needs in order to solve the optimal
control problem, in fact, all that is needed is the Hamiltonian. To con-
struct the optimal control value at some time s, given the initial state x
at time ¢, all that is needed is to find the value of o that minimizes the
Hamiltonian at each time.

We will end this section on the following note; the value function v(x,t)
does not in general solve (3.9) in the classical sense, and neither in the
weak sense. However, the value function is the unique viscosity solution

to (3.9).

Definition 3.1.1 (Viscosity Solution). Assume that v is a bounded and
uniformly continuous function on [0,T] x R*.  We call u a viscosity
solution to (3.9) if
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1.v=gon{T} x R"

2. for each w € C®(R™ x (0,T)) if w— v has a local mazimum at a
point (xg,tg) € R" x (0,T), then Opu(xo, to) + H(Du(xg, ty), z0) > 0

3. for each uw € C*(R" x (0,T)) if u — v has a local minimum at a
point (zg,t9) € R"x (0,T), then Oyu(xo, to)+ H(Du(xg, ), xo) < 0.

It is easy to see that any classical solution is a viscosity solution, fur-
thermore any sufficiently differentiable viscosity solution, is a classical
solution. Uniqueness of viscosity solutions is also guaranteed under as-
sumptions on the Hamiltonian, namely, that H(p,z) is Lipschitz in p
and satisfies for a fixed p € R" and z,y € R"”,

|H(p,z) — H(p,y)| < Clz —y[(1+ |p]).

This concludes our discussion of the deterministic optimal control prob-
lem, and we now turn to the stochastic optimal control problem.

3.2 Stochastic Optimal Control

In this section we introduce the classical stochastic optimal control prob-
lem theory, so as to give an idea of how these problems have been handled
in the classical case by the DPP. We will only require the framework from
this section in the next chapter of this thesis and so after the problem is
introduced, we will keep the remainder of this section brief and descrip-
tive.

We first need to make clear the space on which we are working.

Definition 3.2.1 (Generalized Reference Probability Space). A gener-
alized reference probability space, p is the 5 tuple

v =(Q,F,FL, P, W), (3.10)

where ) is the state space, F is the complete (with respect to P) o-
algebra of measurable sets, P is the probability measure on F and W is
the standard Wiener Process. Furthermore, F. is a complete filtration
such that F! = N,s,FL, (such a filtration is called right continuous).
When F! is the natural filtration generated by the Wiener process, vy will
be called a reference probability measure.
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Fix some T > 0, then for ¢t € (0,7") we have the state X (¢) € R™ which
we wish to control. The state is governed by the stochastic differential
equation (SDE) with an initial condition,

{dxs_b(s,X(s),a<s))ds+a(s,X(s>,a(s))dWs s€ 0T 5

X(0) = =.

In (3.11) we note that a(-) : [0,7] x 2 — A is the control process where A
is some Polish space. The coefficients are the maps b: [0,7] x R* x A —
R™and o : [0,7] x R" x A — R™™ which for a fixed a € A are uniformly
continuous on [0,7] x R™. Furthermore, to guarantee that solutions to
(3.11) exist, we assume that b and ¢ are Lipschitz in x and satisfy the
linear growth condition

(s, z,a)] + llo(z, s, a)]| < C(1 + |z]). (3.12)

This classical existence and uniqueness result for SDEs can be found in
[16]. The following definitions makes clear what it means to be a solu-
tion of 3.11, we first introduce the preliminary definition of progressively
measurable.

Definition 3.2.2 (Progressively Measurable). A stochastic process a(-)
is progressively measurable if for all s > t, a(-) : [t,s] x Q — A is
Bor([t, s]) x FL measurable, where Bor(S) is the Borel o-algebra on the
set S.

Definition 3.2.3 (Solution to the SDE). A stochastic process X(+) is a
solution of the (3.11) if X is a progressively measurable process and for
every s >t we have that

X(s)=x+ /ts b(r, X (r),a(r))dr + /ts o(r, X(r),a(r))dW (r),

P-almost surely.

We now introduce the cost functional which will be what is minimized
in this control problem. The functional will consist of a running cost
r(s, X(s),a(s)) and a terminal cost g(X (7")) which we assume to be con-
tinuous. The full cost functional is then given by
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J(a(-)it,z) =E {/tTr(s,X(s), als))ds + g(XT)} . (3.13)

Now that all the necessary notions have been introduced, we begin to
outline the stochastic optimal control problem in both it’s strong and
weak formulations. This is strongly paralleled with the theory for strong
and weak (martingale) solutions of SDE’s, where the main difference is
that the underlying probability space is part of the weak solution whereas
it is fixed in the strong solutions.

3.2.1 Strong Formulation

In the strong formulation, we fix the Generalized Reference Probability
Space v and we define the set of admissible controls to be

U = {a(-) : [0,T] x @ — A] a(-) is F. progresively measurable} .
(3.14)

The strong formulation of the problem is to then minimize (3.13) over
the set of all admissible controls, U;.

3.2.2 Weak Formulation

In the weak formulation, we allow the Generalized Reference Probability
Space to be chosen as part of the solution, as such, the set of all admissible
controls will be given by

w, = Jw, (3.15)
8l

where the union is over all possible Generalized Reference Probability
spaces.

Now that we have these formulations outlined, we will look at the dy-
namic programming principle for the stochastic optimal control problem.
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3.2.3 Dynamic Programming

The weak formulation introduced allows to formulate the DPP by varying
the reference probability space which means the probability space is part
of the control. We introduce the value function

V(t,xz) = inf J(a;t, z),

acU;

and now state the DPP for stochastic control problems.

Theorem 3.2.1. Let h be small enough such thatt <t+h <T. Then

V(t,z) = inf E l/hr(s,X(s),a(s))ds +V(Et+hX({Et+h)]|.

acU;

The DPP connects the control problem to the HJB equation

F(t,z, Du, Du?) =0
{ut—i- (t,x, Du, Du?) | (3.16)

u(T', x) = g(x)

for some appropriate form of Hamiltonian F'. This can then be used as
described previously to solve for the optimal control.



Chapter 4

Mckean-Vlasov Stochastic
Optimal Control

In this final chapter, we examine the progress made in the optimal control
of Mckean-Vlasov SDEs, and highlight the reformulation of this problem
as a deterministic optimal control problem.

4.1 Mckean-Vlasov SDEs

Mckean-Vlasov SDEs (MKVSDESs) are of the form

dXt = b(t, Xta pt)dt + U(t, Xta pt)th (41)

In (4.1), W, is a Brownian motion on a probability space (2, F,P) with
the filtration of Brownian motion F and p; = law(X;). MKVSDEs are
characterized by the co-efficients dependence on the underlying proba-
bility distribution. That is, b and ¢ are deterministic functions defined
on [0, 7] x R x Py(R?) where P»(R?) is endowed with the W, metric.

SDE’s of this type were originally considered by Mckean [35] in his study
on the propagation of chaos and Kac [21] on his work on interacting
molecules. More recently, the theory of Mean field games put forth by
Lasry and Lions in [27] saw the emergence of such SDEs as the large
population limit of the behavior of agents who have some mean field
interaction. Indeed for this reason MKVSDEs are referred to of "Mean
Field type.”
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The following existence and uniqueness result of strong solutions to the
initial value problem

(4.2)

Y

dXt = b(t>Xt>Pt>dt + U(t>Xt>Pt>th S (OvT]

where b and o can be random is taken from [12].

Theorem 4.1.1. Assume

e There ezists some L > 0 such that for all t € [0,T], w € ,
z,y € RY and p,v € Py(RY),

b(t, 2, p) = b(t, y,v)|[+|o(t, 2, 1) — o(t,y,v)| < Ll — y|[+Wa(p, v)]
(4.3)

o For each (z,p1) € R? x Py(R?) we have that
T
E/ |b(s, x, p)|ds < +o00
0
and

T
IE/ lo(s,z, u)|ds < 400,
0

and the processes b(s,x, i) and o(s,xz, ) are progressively measur-
able with respect to the filtration F

e Xo € LX(QRY).

Under these assumptions, there exists a unique continuous solution to

(4.2).

We now move on to discuss the optimal control of these SDEs.

4.2 Mckean-Vlasov Optimal Control Prob-
lem

We define the strong formulation of the stochastic optimal control prob-
lem as in section 3.2 with the following exceptions. The trajectory follows
the dynamics given by
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(4.4)

dXt = b(t, Xt, P+, at)dt + O'(t, Xt, P+, at)th t e (O, T]
X(0) = Xo.

where b and o are deterministic functions defined on [0, T x R? x P(R) x
A. The cost functional is

J(a) = E { /0 ot X prs )t + (X pT)}

where r is the running cost and ¢ is the end point cost.

Up until recently the study of such an optimal control problem has been
left untouched in the literature. As the authors in [12] explain, this was
largely due to the lack of a formalism to analyze functions of probability
measures. Although this thesis is mainly concerned with the develop-
ments of such a theory from the grounds of optimal transportation, it
would be dubious of us to ignore the notion of the L-derivative intro-
duced by P.L. Lions [I1]. This has become the main derivative used
for functions on the space of probability measures, and for good reason.
This notion of derivative relies on the lifting of functions of probability
measures to functions of L? random variables. As such it shifts the prob-
lem from analysis on the Wasserstein space to analysis on the Hilbert
space L2, which has been routinely studied. For instance, the theory of
viscosity solutions for second order Hamilton-Jacobi equations has been
extensively studied on separable Hilbert spaces by Lions in [30,31]. As
mentioned in section 3.2.3, solutions to HJB equations are viscosity so-
lutions, and so these previous results of Lions are indispensable.

Viscosity solutions to Hamilton Jacobi equations on the Wasserstein
space have been studied in [20], which uses the notion of differentia-
bility arising from optimal transportation. In their work [12], Carmona
and Delarue show the equivalence between the notions of the L-derivative
and differentiation originating from optimal transportation theory.

Before we detail the advances in the control problem by the dynamic
programming principle, we note that the first results on optimal control
of MKVSDEs in a general setting were achieved using the Pontryagin
maximum principle. See [13] for the first study in a general setting and
the comprehensive reference by the same authors [12]. We do not discuss
these results or their progression any further as this is not the focus of
this thesis.
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The first results applying the DPP to this problem in a general setting
were due to Pham and Wei in [38,39]. Before their work, the dynamic
programming principle was studied for specific co-efficients and cost func-
tionals in [28]. This work depended upon the assumption that the under-
lying marginal distribution of the state process exists for all time. This
later work relied on reformulating the problem as a deterministic control
problem on the law of the state of the trajectory. In particular, this
was achieved using the Kolmogorov forward equation, which was by then
a standard process for optimally controlling classical SDEs [2]. This is
the approach we choose to follow in the next section in a more general
setting.

The more general works of Pham and Wei relied on the same principle of
controlling the underlying probability distribution, however, they did not
use the Kolmogorov equation. Instead they established a flow property
for the marginal distribution via the push forward of measures as done in
[9]. The advantage of this method is that it bypasses the need to discuss
the well-posdeness of the Kolomogorov forward PDE, and without assum-
ing restrictive regularity assumptions on the co-efficients. Furthermore,
in comparison to the maximum methods used in the first papers address-
ing this problem in a general setting, this method does not require any
convexity assumptions. We briefly mention that they successfully applied
their results to two financial models, namely mean-variance portfolio se-
lection and the inter bank systemic risk model. However, their work
is restricted to closed loop feed back controls, and thus does not work
for larger more general classes of controls. Closed loop feedback con-
trols are ones which can be written as functions of the state variables,
a = a(x,s,p). In [1], the authors prove a version of the DPP which
allowed for a broader range of controls, specifically, controls which are
open loop. We note that all these worked in a Markovian framework,
that is, the controls considered cannot depend on states earlier than the
previous one.

In a similar vein to the control of classical SDEs in subsection 3.2.2,
[11] formulated a notion of weak solution to the Mckean-Vlasov optimal
control problem, providing the most recent contribution to the theory.
The authors prove the DPP for this weak formulation under the most
general assumptions so far obtained in the literature. They only require
continuity of the co-efficients as well as a growth condition; there is no
Lipschitz assumption present and no assumptions on the running cost or
terminal cost. Imposing Lipschitz assumptions on the co-efficients and
growth conditions on the running cost and the terminal cost, the authors
proved the DPP for their strong formulations of the problem. All their



4.3. REFORMULATION AS A DETERMINISTIC CONTROL PROBLEM43

results were proven for the most general class of controls, non-Markovian
controls, which none of the previous results could cover. A key feature of
the analysis in [14] is that they do not rely on the notion differentiability
introduced by Lions, but rather they use measurable selection arguments
[15,24,25] giving them the ability to use less restrictive assumptions.

The following reformulation was found to be contained in the text [12].
We make two distinctions in the method; in their work, they do not
use the dynamic programming principal to solve for the optimal control.
Rather their derivation of the Hamiltonian was an intermediate step to
use the Pontryagin maximum principle. Furthermore, they did not use
the DPP in their derivation of the Hamiltonian, but rather used an ad-
joint variable method. As mentioned, the procedure we follow is quite
standard in the literature for classical SDEs, and was carried out for spe-
cific cases in the Mckean-Vlasov setting. We note that in this work we
use the existence results in [12] to guarantee the existence of the under-
lying probability distribution at all times, doing away with the existence
assumptions made in [28].

4.3 Reformulation as a Deterministic Con-
trol Problem

The idea of this section is to re-formulate the problem into a determin-
istic optimal control problem. We then use the dynamic programming
principle to write down the general form of the Hamiltonian derived in
section 3.1.3. We assume we are dealing with a fixed complete probability
space, (Q,F,FL P, W), where F’ is the natural filtration of the Brownian
motion W. We restate the stochastic control problem here as

{dXS = b(s, X (s), ps,a(s))ds + o(s, X(s), ps,a(s))dWs on (0,T]
X(0) = Xo,
(4.5)

where the aim is to minimize the cost functional

Ja()it.z) = E { / (5, X(5), pera(s))ds + g<XT,pT>} (49)
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over the set A of all admissible controls

A ={a():[0,T] x @ = Al a(-) is F, progresively measurable}. (4.7)

It is a well known fact that the probability distribution of the state X,
defined as p; := £(X;) = Po X; ' evolves under the Kolmogorov forward
equation. That is, for ¢ € (0,77,

Ohp+V-(b(t, X (1), p(t), alt))pr) = %VQ(U(tX(t),p(t), a(t))o(t, X (t), p(t), a(t))” ps).
(4.8)

We impose the assumptions of theorem 4.1.1 upon b and ¢ in order to
ensure the existence and uniqueness of solutions to the SDE (4.5), which
in turn will give us existence of solutions to the PDE (4.8), just take
Pt = laW(Xt)

We therefore recast the problem of optimally controlling the state of
the trajectory, to optimally controlling the distribution of the trajectory.
This is a completely deterministic control problem. Once this is achieved,
we can solve the deterministic problem to find the optimal control o*
using the dynamic programming principle. However, there are still some
questions that remain: what is the initial condition of the initial value
problem, and what is the cost functional which we will aim to minimize.

The first question is obvious, we simply take the initial distribution to be
the probability measure p; = P o X;' where Xj is the random variable
describing the initial state of the trajectory.

Dealing with the cost functional is slightly trickier, we require to re-write
(4.6) in a deterministic form. Given that we know what the distribution
is at time ¢ € (0,7, (this is given to us by (4.8)), we can calculate the
expectation of the running cost and the terminal cost, even though we
do not know what the state is. In light of this, we can write down the
following deterministic cost functional,

Ja()imt) = / #(s, p(s), a(s))ds + §(p(T)), (4.9)

where 7(s, p(s), a(s)) = [ 7(s,2', ps, a(s))dps(2") and §(p(T) = [ g(a', pr)dpr ().
Here, p(s) is the solution to
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{am V- (bps) = 3V2(00Tp,) on (t,T] (4.10)

Pt = M.

In light of these considerations, we can write down the deterministic
optimal control problem associated with (4.5).

Given that the probability distribution of the trajectory follows the initial
value problem

(4.11)

Osp +V - (bps) = 5V*(o0"p)  on (0, 7]
Po = Po XO_17

find the optimal control a*() € A, such that the cost functional given
in (4.9) is minimized. We can then follow the approach given in section
3.1.3 to write down a value function and find a Hamiltonian to minimize
at each time step.

The value function for the cost functional in this case will be given by
v(p,t) = inf J(a;p,t). (4.12)
a()eA

Since this is a deterministic problem, we use the dynamic programming
principle as was done in section 3.1.3 to arrive at the Hamilton-Jacobi-
Bellman equation

0=0w(tp)+ inf {r(u(t),a(t) + (Opu(u(t).1),

V- (bp) + 500 P}, (4.13)

where 0, is the derivative of the value function with respect to the prob-
ability measure. The Hamiltonian in this case is

H = inf {r(u(t),a(0) + (00(n(t), )

V- (bp) + 5002}, (4.14)

which can now be minimized to find the optimal control a*.
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4.3.1 An explicit example

In this final section, we will provide a simple example of where the above
abstract formalism becomes useful and simplifies the problem at hand.
We consider we are working in the framework of section 4.3 with the
exception of working in one dimension as well as that we are trying to
maximize the following gain function

U(Xy) — /0 "yt (4.15)

Here, C(a) = [ ¢(a)p(x)dz is the cost and U(z) is the end point reward.
Since the state of X is governed by (4.5) then p(z) = law(X) is governed
by (4.8), which we re-arrange in the form of

8tpt + 5’x(vtpt) = O, (416)

where vy ;== b — %p%@x(a?pt) which simplifies the following computations.
Taking v(t, ) as the value function for this problem, we evaluate the
inner product contained in (4.13) as follows,

@t 00} = [ Dyt 100u0

substituting 4.16

= —/8,01)(75,#)81(071)

intergrating by parts

= /(’)x(apv(t,u))(bp — %ax(OQp))

= / (D (D,0(t, )b + %am(apv@,u))f)-

Hence, the maximization of the Hamiltonian in this instance reduces to
the point wise maximization of

0,0y (t, 1)+ 50 Oyt 1) — cla). (4.17)



Conclusion

In this thesis we have surveyed the progress made in the theory of opti-
mal transportation, particularly on the metric structure it motivated on
the space of probability measures. The Otto calculus has seen success in
a variety of applications, specifically the linear Fokker-Planck equation
is realized as the gradient flow of an energy functional in the Wasser-
stein space. The dynamic programming principle was then studied as
a tool to solving the optimal control problem in the deterministic and
stochastic cases. Continuing on from this, recent advances of applying
dynamic programming to the control of Mckean-Vlasov stochastic differ-
ential equations were reviewed. We carried out a reformulation of the
Mckean Vlasov problem as a deterministic problem on the underlying
probability measure. Using the existence and uniqueness theorem taken
from [12], we ensure the existence of a probability measure at all times,
which past similar approaches lacked.
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Appendix A

Preliminary Mathematics

In this appendix, we collect some useful results that were studied through-
out the honours project and which are necessary to understand the main
content of the thesis. The references consulted were [3,17,45].

A.1 Cauchy-Lipschitz Theory

Definition A.1.1 (Lipschitz functions). Let (X1, d;) and (Xa,ds) be two
metric spaces. A function f: X1 — Xy is called Lipschitz if there exists
some K > 0 such that for all z,y € X3,

This is the central assumption in the Cauchy-Lipschitz theorem.

Theorem A.1.1 (Cauchy-Lipshcitz (1)). For the initial value problem
defined on t € [0,T],

2'(t) = f(t,z(t)), x(to) = xo, (A1)
suppose that f is uniformly Lipschitz in x and continuous in t. Then, for

some § > 0, there exists a unique solution z(t) to (A.1) in the interval
[to — 0,10 + 0].

The following theorem is an existence result for flows of vector fields.
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Theorem A.1.2 (Cauchy-Lipschitz (2)). Consider the initial value prob-
lem (A.1) and let f be uniformly Lipschitz in x and continuous in t.
Furthermore, for each t € [0,t] define the map T, : R" — R™ where
Ti(x) = x(t) and z is the unique solution to (A.1) as guaranteed by the-
orem A.1.1. Then (1}); is a one parameter family of homeomorphisms.
If in addition f is C*, then the map T is a C* diffeomorphism.

A.2 Functional Analysis

In this section we recall some facts from functional analysis.

Let E be a normed vector space with norm ||| ;. We call the set of all
linear functionals, functions of the form f : £ — R, the dual space, E*.
The dual norm is defined as

[fllge = sup [f(x)]. (A.2)

(IX]|<1,zeE

Now, given a function ¢ : E — (—o00, 00| that is not identically infinity,
define ¢* : E* — (—00, 00] such that

¢"(f) = sup{{f, z) — ¢(x)}, (A.3)

zeE

where (f,x) = f(x) is the scalar product for the duality F, E*. This is
known as the Frenchel-Legendre transform of ¢ and is a convex function,
so in light of this, ¢* is also called the convex conjugate of ¢.

Definition A.2.1 (Lower semi-continuous). A function ¢ : E — (—00, +00]
is lower semi-continuous if for every sequence x,, — x in E, then

liminf ¢(z,,) > ¢(x).

n—o0

We note that the indicator function is convex if and only if it is the indica-
tor function of a convex set. The following version of Riesz representation
theorem for the dual to the space of continuous linear functionals is used
in the proof of the Kantorovich duality.
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Theorem A.2.1 (Riesz Representation Theorem for Measures). Let X
be a compact Hausdorff space and let  be a radon measure on X. Then
there is a unique signed Borel measure v on X such that

p— d
(e, w) /Xu v,
for allu € C(X).

A.3 Weak formulation of Partial Differen-
tial Equations

Throughout this section X will denote some subset of R™.

Definition A.3.1 (Test function). A test function ¢ : X — R is smooth
and has compact support. The set of all test functions on X is denoted
as D(X) and is a real vector space.

From here on, we assume ¢ € D(X).

We can define a topology on D(X) in terms of convergence of sequences
in this space. We say that ¢ — ¢ in D(X) if there exists some K C X
compact such that |J;—, supp(¢y) C K and that for every multi index a,
the sequence 0%¢ — 0“¢ uniformly.

Definition A.3.2 (Distribution). A distribution F is a continuous linear
functional F': D(X) — R and when F acts on a test function ¢, we write

(F, ).

Clearly, the space of all distributions is dual space of D(X), D(X)*.

A function f: X — R defines the distribution F; by the relation

@%@ZAJ@#@M, (A4)

and similarly a measure p defines F), by

w;wzémmwm, (A5)
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We define the derivative of a distribution to be such that

<F17¢> = _<F7 ¢/>7 (A6>

and as such every distribution is smooth. Note that this is justified by
integration by parts since all test functions vanish on the boundary of X
as they have compact support. A particular example used in the thesis
is the definition of V- operator which we define to be

<V'FM7¢>:_<FM’V'¢>' (A7>

When D(X)* is endowed with the weak-* topology, we have the following
result.

Proposition A.3.1. A sequence of distributions Ty, converges to T with
respect to the weak-* topology on D(X)* if and only if

<Tk>¢> - <T7 (b)?
for all p € D(X).

We can define a linear differential operator on X to be
P=> a,(z)0", (A.8)

where a,(z) are the co-efficients and « are multi indices that vary in
some subset of Njj. Now, a solution, u(x), to the equation

Pu(z) =0 (A.9)

is called a strong solution. We can now define weak solutions to (A.9) in
terms of distributions, multiplying (A.9) by ¢ € D(X) and integrating
by parts we get the following weak formulation

/Xu(:v)Q¢(x)dx =0, (A.10)

and a solution u(x) that satisfies (A.10) for all ¢ € D(X) is called a weak
solution. The operator () is found by successive integration by parts and
is known as the formal adjoint of P and is found to be
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Q=Y ()" [ac(x)]. (A11)

[

A.4 Convex Analysis

In this section, we state the definitions and theorems needed to under-
stand the existence theorems of optimal transport plans in chapter 1 as
well as some of the ideas used in the proofs of the theorems in chapter 2.

We first begin with the definition of small sets on a metric space (X, d).
We will need to introduce the definition of Hausdorff dimension.

Definition A.4.1 (Hausdorff Dimension). Define the quantity
HY(S) = inf{Z(diamUi)d : {Ui }1en cover S and diam(U;) < 0)}.
i=1
Then
HY(S) = lim H{(S)
6—0
is the d-dimensional Hausdorff dimension. Finally,
diam(S) = inf{d > 0 : H*(S) = 0}
is the Hausdorff dimension.
Once we have this definition, a small set in R™ is one that has Hausdorff

dimension n — 1. In what follows we recall some basic facts about convex
functions. We let U C R".

Definition A.4.2 (Convexity). A function f : U — R is convex if for
anyt € (0,1), x,y € X,

fltz+ (L=t)y) <tf(x) + (1 —1t)f(y).

A convex function is locally Lipschitz continuous on the interior of its
domain.

Theorem A.4.1 (Rademacher). Let U C R". A function f : U — R
that is Lipschitz continuous is differentiable almost everywhere.
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So in light of this, a convex function f is automatically differentiable
on the interior of it’s domain and so Vf is well defined. For points
on the frontier of the domain or simply sharp points in a piece wise
defined convex function, it may not be differentiable. To deal with non-
differentiability of convex functions, we introduce the notion of subdif-
ferential.

Definition A.4.3. The subdifferential of a convexr function, f: U — R
at some point xg € U and is the set of all y € R™ such for all x € U we
have that

f(x) = f(z0) = (y, v — x0).

We say that y belongs to the subdifferential of f at x¢ and denote it by
y € 0f (o).

If Of(x) only contains one element, then f is differentiable at z and
that one element is V f (). We follow the convention in [15] and identify
the subdifferential with it’s graph, Graph(df) C R™ x R™.

A rich duality between convex functions and their convex conjugates (also
called the Frenchel-Legendre transform) exists. We state one key result
that is used throughout this thesis and that is if f is differentiable and
strictly convex then

(VH =V

We will need the notion of a superlinear function, that is, a function f
that satisfies

m @ = +00.

In the final part of this section, we will list a series of important definitions
that generalize the notion convexity and concavity.

Definition A.4.4 (A uniformly convex). A function ¢ : U — R is called

2
A uniformly convex if the map x +— ¢(x) — c% is convex.

Definition A.4.5 (Semi-convex). A function ¢ : U — R is called semi-

convex with constant C' if the map x — ¢(x) + C@ is convez.

Definition A.4.6 (c-concavity). Let XY be non-empty sets and let
c¢: X xY — RU{+o00} be some function. A function ¢ : X — RU{—o0}
is c-concave if there exists some 1 : Y — RU{—o0}, not identically —oo,
such that for all v € X, ¢(x) = infern(c(z,y) — P (y)].
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