
2 Savin’s Approach

Today we begin a more precise discussion following last weeks heuristic. We follow
the seminal work of Savin in [2] and we prove

Theorem 2.1 (De Giorgi). There exists a universal "○ so that if @E is a minimal
surface in B1, 0 ∈ @E and

@E ∩B1 ⊂ {�xn� ≤ "}
for " ≤ "○ then @E is an analytic surface inside B1�2.

As discussed, the proof of this Theorem follows from

Theorem 2.2 (Improvement of Flatness). Suppose @E is a minimal surface in B1,
0 ∈ @E and

@E ∩B1 ⊂ {�xn� ≤ "} .
There exists an "0(n) universal so that if " ≤ "0 there exists ⌫ ∈ Sn−1 such that

@E ∩Br0 ⊂ ��x ⋅ ⌫� ≤ "

2
r0�

for some universal constant r0.

Throughout the proof we will denote points in Rn−1 as x′ so that x = (x′, xn) ∈ Rn and
we denote balls in Rn−1 as B′. This allows us to view @E as a multivalued graph over
B′1. The proof is based on a viscosity approach and so we first observe that minimal
surfaces satisfy the minimal surface equation in non-divergence form in the viscosity
sense. That is, if P is a paraboloid that touches @E from below at x′0 then we have

�P (x′0) + (∇P (x′0))TD2P (x′0)∇P (x′0) ≤ 0
and the opposite inequality if it touches it from above.

In order to prove Theorem 1.1 we need the following Harnack inequality for flat
minimal surfaces. The proof of this Theorem is quite involved and is very much in
the same spirit as that of Krylov-Safanov Harnack inequality - we refer to [2, Section
6] for the proof.

Theorem 2.3. Suppose E is a minimal surface in B1 and that

@E ∩B1 ⊂ {�xn� ≤ "} .
There exists an "1(n) so that if " ≤ "1(n) then

@E ∩B1�2 ⊂ {�xn� ≤ "(1 − ⌘)}
where ⌘ > 0 is a small universal constant.
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We now show how this Harnack inequality implies the improvement of flatness theorem.
The remarkable aspect of this proof is that it is in the same spirit of the proof of Hölder
continuity of harmonic functions, that is

Harnack Inequality �⇒ Oscillation decay �⇒ Hölder continuity.

The key di↵erence is that the final step is not Hölder inequality, rather we are led to
a Hölder continuous function that is harmonic! We now give the details.

Proof of 1.1. We argue by compactness and suppose that no such "0 exists. Now take
a sequence of minimal surfaces @Ek containing the origin such that

@Ek ∩B1 ⊂ {�xn� ≤ "k}
where "k → 0 as k → ∞. For every x0 ∈ B1�2 we have that �(x − x0) ⋅ en� ≤ 2"k for all
x ∈ @Ek ∩ B1�2(x0) and so if 4"k ≤ "1(n), we can apply Theorem 2.3 in B1�2(x0) to
obtain

@Ek ∩B1�4(x0) ⊂ {�(x − x0) ⋅ en� ≤ 2"k(1 − ⌘)} .
We keep iterating Theorem 2.3 to obtain that

@Ek ∩B2−m(x0) ⊂ ��(x − x0) ⋅ en� ≤ 2"k(1 − ⌘)m−1� (2.1)

which is possible as long as

2m"k(1 − ⌘)m−2 ≤ "1(n). (2.2)

We now define the sets

Ak = �(x′, xn

"k
) ∶ x ∈ @Ek ∩B1�2� ,

and from (2.1) we have the oscillation decay of the multivalued graphs Ak. Specifically
we have for all x0 ∈ B1�2

Ak ∩ ��x′ − x′0� ≤ 2−1−m� ⊂ ��(x − x0) ⋅ en� ≤ 2(1 − ⌘)m−1� . (2.3)

From (2.3) we can conclude that

�Ak(x′) −Ak(y′)� ≤ C ��x′ − y′� +C"�k��
where � = − log2(1−⌘) and � = (1−�)−1. By the Arzela-Ascoli Theorem, Ak converge
up to a subsequence to the graph of a Hölder continuous function w(x′) in B′1�2.
We show that w is harmonic in B′1�2 in the viscosity sense. Let P (x′) be a quadratic
polynomial that touches w from below at some point x′0 ∈ B′1�2. By the uniform
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convergence of the Ak to w we have that for some k large, "kP (x′) + c touches @Ek

from below. To see this one needs to find the point x′1 satisfying

max
B′1�2
�"P (x′) − �(k)�x′ − x′0�2 − @Ek(x′)� = "P (x′1) − �(k)�x′1 − x′0�2 − @Ek(x′1).

where �(k) > 0 is a constant depending on k and we are treating @Ek as a multivalued
graph over Rn−1. For �(k) large enough x′1 ∉ @B′1�2 since by uniform convergence of

the Ak to w there exists a �(k) so that �@Ek −w� ≤ �(k). If then x′1 ∈ @B′1�2, and
letting r = dist(x′0,@B′1�2), we would have

�(k) − �(k)r2 ≥ "P (x′0) − @Ek(x′0) ≥ −�(k)
which is a contradiction for �(k) ≥ 4�(k)

r2 . Since @Ek is minimal we have that

"k�P + "3k(∇P )TD2P∇P ≤ 0,
and so dividing by "k and sending k → ∞ we obtain that �P ≤ 0. This shows that
�w ≤ 0 in the viscosity sense. A similar argument with a paraboloid touching w from
above yields that �w ≥ 0 in the viscosity sense and so, w is harmonic in B′1�2. Since
w is harmonic, w(0) = 0 and �w� ≤ 1 a Taylor expansion yields

�w(x′) −∇w(0) ⋅ x′� ≤ 4C(n)r2○
for �x′� ≤ 2r○. Choosing r○ small enough we have that

�w(x′) −∇w(0) ⋅ x′� ≤ r○
4

and by uniform convergence, we have for k large enough so that �Ak(x′) −w(x′)� ≤ r○
4

for �x′� ≤ r○, that
Ak ∩ {�x′� ≤ r○} ⊂ ��xn − x′ ⋅ ∇w(0)� ≤ r○

2
� .

Then setting ⌫ = (−"k∇w(0),1)�(−"k∇w(0),1)�−1 we have that

@Ek ∩Br○ ⊂ ��x ⋅ ⌫� ≤ "k r○2 � .
This is a contradiction and hence we have proved the Theorem.

We now give the

Proof of Theorem 2.1. We will show that @E is C1,� around every point x0 ∈ @E∩B1�2
and the analyticity will follow from Schauder estimates for the MSE. With no loss

9



⌫k

⌫k+1

Brk○
Brk+1○

✓k

"
2k r

k○

"
2k+1 rk+1○

@E

Figure 3: The largest possible ✓k

of generality assume x0 = 0 and iteratively apply Theorem 1.1 around 0 to obtain a
sequence of normal vectors {⌫k}k∈N satisfying

@E ∩Brk○ ⊂ ��x ⋅ ⌫k� ≤ "

2k
rk○� .

We now estimate the angle, ✓k, between two consecutive vectors ⌫k and ⌫k+1. From
Figure 3 we obviously must have that

�tan(✓k)� ≤ 1

r○
"

2k

and so �✓k� ≤ C "

2k
,

where C = C(r○) is a universal constant since r○ is universal. Using the identity
cos(✓) ≥ 1 − ✓2 we then obtain that

�⌫k+1 − ⌫k� ≤ C "

2k
.

We now observe that this implies that

lim
k→∞⌫k = ⌫1 +�

k∈N
⌫k+1 − ⌫k

exists and is well defined. Calling this limit ⌫(0) we have that

�⌫(0) − ⌫k� ≤ C "

2k
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and so for all x ∈ @E ∩Brk○ we have

�x ⋅ ⌫(0)� ≤ �x ⋅ (⌫(0) − ⌫k)� + �x ⋅ ⌫k� ≤ C"rk(1+�)○
where 1

2 = r�○ . So we obtain that

@E ∩Brk○ ⊂ ��x ⋅ ⌫(0)� ≤ C"rk(1+�)○ �
and by letting k →∞ we immediately see that @E only attains one value over 0 ∈ Rn−1.
Doing this over every point in B′1�2 we have that @E is a graph over B′1�2. We call
this graph u and conclude that for every x0 ∈ @E ∩B1�2 we have

�u − u(x′0) − (x − x0) ⋅ ⌫⊥(x0)�L∞(B
rk○ )(x0) ≤ C"rk(1+�)○ (2.4)

for all k ≥ 1. Dividing Equation (2.4) by rk○ and letting k →∞ we automatically see
that ∇u(x0) = ⌫⊥(x0) and so we obtain again from (2.4) that

�u(x′) − u(x′0) −∇u(x′0) ⋅ (x′ − x′0)�L∞(B′
rk○ (x′0)) ≤ C"rk(1+�)○ . (2.5)

Now fix any two points x′1, x′2 ∈ B′1�2(0) so that �x′1 − x′2� ≤ r○. Moreover fix some k○ ∈ N
large enough so that

rk○+1○ ≤ �x′1 − x′2� ≤ 1

8
rk○○ .

Now let

x′3 = x′2 + rk○○
8

∇u(x′1) −∇u(x′2)�∇u(x′1) −∇u(x′2)�
so that �x′1 − x′3� ≤ 1

4r
k○○ and �x′2 − x′3� ≤ 1

8r
k○○ . By (2.5) we then have that

�(∇u(x′1) −∇u(x′2)) ⋅ (x′3 − x′2)� ≤ C"r�(k○+1)○
and since x′3 − x′2 is parallel to ∇u(x′1) −∇u(x′2) we have

�∇u(x′1) −∇u(x′2)�
rk○�○

≤ C".

However,
�x′1−x′0��

r�○ ≥ rk○�○ and so we conclude

�∇u(x′1) −∇u(x′2)��x′1 − x′2�� ≤ 1

r�○
C" < C.

If �x′1 − x′2� > r○ then one can apply the triangle inequality for a sequence of points
separated less than r○ apart connecting x′1 and x′2, and consequently, we obtain that
@E is a C1,� graph in B1�2.
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