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In this short note we are concerned with proving

Theorem 1.1. Let Ω ⊂⊂ Rn and u ∈H1(Ω) be a weak solution of

∂

∂xi
(aij

∂u

∂xj
) = 0, (1.1)

where aij are bounded, measurable and uniformly elliptic. Then u ∈ Cα
loc(Ω) for some

α > 0.

The method we adopt here is based on the methods of Campanato. We will show
that our weak solution u lies in the Campanato space L2,λ(Ω) for some λ > 0, that is

L2,λ(Ω) = {u ∈ L2(Ω) ∶ sup
0<r<min{1,dist(x0,∂Ω)},x0∈Ω

r−λ∫
Ω∩Br(x0)

∣u − ux0,r∣
2
< ∞} ,

where

ux0,r =
1

∣Ω ∩Br(x0)∣
∫

Ω∩Br(x0)
u.

Then thanks to the following theorem, this will imply that our solution is Hölder
continuous.

Theorem 1.2 (Campanato). If λ > n then

L2,λ ↪ C0,α

where α = λ−n
2 .
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Remark 1.3. So that these averages that we are taking don’t blow up and things
remain meaningful, it is necessary to assume that Ω is of type A, that is there exists
some A > 0 such that for all r > 0 and x0 ∈ Ω there holds ∣Ω ∩Br(x0)∣ ≥ Arn. This is
not too important in what follows.

We know (by the Cacciopolli inequality) that for u as in theorem 1.1 there exists
some θ ∈ (0,1) such that for any 0 < R ≤ 1 there holds

∫
BR/2(x0)

∣∇u∣
2
≤ θ∫

BR(x0)
∣∇u∣

2
, (1.2)

and coupling this with Campanato’s embedding theorem is enough to give the proof
of theorem 1.1 in n = 2.

Proof of theorem 1.1 when n = 2. For any x0 ∈ Ω and R > 0 such that 0 < r < R <

min{1, dist(x0, ∂Ω)} we define the function

φ(r) = ∫
Br(x0)

∣∇u∣
2
.

We now note that by the Poincaré inequality have that

∫
Br(x0)

∣u − ux0,r∣
2
≤ Cr2

∫
Br(x0)

∣∇u∣
2
= Cr2φ(r).

It is then enough to control φ(r) by rα for some α small. However, this is a
consequence of (1.2). Explicitly, we take α > 0 such that θ = 2−α and for any r > 0
choose k ∈ N such that

2−k−1 <
r

R
< 2−k,

then by monotonicity of φ we have that

φ(r) ≤ φ(2−kR)

≤ θkφ(R)

≤ 2−kαφ(R)

≤ (
2r

R
)αφ(R)

≤ Crα,

where C = ( 2
R)

αφ(R). Hence we arrive at
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∫
Br(x0)

∣u − ux0,r∣
2
≤ Cr2+α,

which shows that u ∈ L2,2+α(Br(x0)) ↪ C0,α/2(Br(x0)).

It is worth at this point taking a step back and looking at what happened. The
quantity φ(r) is dimensionless for n = 2, this meaning that it remains invariant under
rescaling. Now since any dimensionless quantity scales the same as the oscillation,
(since the oscillation is invariant under rescaling), there is a chance that we can
link the two concepts, our dimensionless quantity and the oscillation. Note that
there is only a chance, not a guarantee that this works, it really all depends on the
dimensionless quantity we look at. Now, the Caccioppoli inequality gave us that
φ(r) decays geometrically, (1.2), and if we can somehow link this to the oscillation
we would prove that the oscillation decays (and hence Hölder regularity). What our
above proof has shown is that we can link this quantity φ(r) with the oscillation via
the Campanato embedding theorem.

For n ≥ 3 a variant of the above method can be used, however, we obviously need to
find the right dimensionless quantity. For any x0 ∈ Rn and R > 0 we introduce the
fundamental solution of (1.1) in the ball BR(x0), g(x,x0), that is g satisfies

∂

∂xi
(aij

∂u

∂xj
) = δ(x0) (1.3)

Using the ideas of Nash, Fabes and Strook achieved in [1] the a-priori bounds

1

C(n)
∣x − x0∣

2−n
≤ g(x,x0) ≤ C(n)∣x − x0∣

2−n
. (1.4)

(Note that you need to integrate their heat kernel bounds in time in order to achieve
these bounds here).

This is then enough to conclude theorem 1.1 for n ≥ 3. As was done in [1], (1.4) gives
rise to a weak Harnack inequality which then gives the oscilation decay and finally
Hölder regularity in the usual way. Indeed, the hard work was done in showing (1.4),
however we outline another way to conclude the Hölder continuity using Campanato’s
methods. We first redefine

φ(r) = ∫
Br(x0)

∣∇u∣
2
g(x,x0), (1.5)

and note that it is dimensionless in Rn.
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Then by (1.4) there holds g(x,x0) ≥ Cr2−n in Br(x0). This coupled with the Poincaré
inequality yields

∫
Br(x0)

∣u − ux0,r∣
2
≤ Crmφ(r).

Now proving that φ(r) is again a contraction requires testing (1.1) with the right
testing function. We don’t perform all the details here (see [2, Theorem 2.8] for the
details, in fact, this is the inspiration for this treatment) but we describe the testing
function. First define ũ = ⨏BR/BR/2

u and then using a standard mollifying sequence

(ρε)ε>0 regularise the fundamental solution

gε(x,x0) = ∫ G(x,x0 − z)ρε(z)dz.

Now take a cut-off function η ∈ C∞

c (BR(x0)) with η = 1 on BR/2(x0) and ∣∇η∣ ≤ 4/R.
We can now test in (1.1) with

ψε = (u − ũ)gεη
2.

Now once you have that φ(r) is a contraction you can conclude in a similar manner
as before.
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